Advertisement

Innovative Technical Creativity Methodology for Bio-Inspired Design

  • Pierre-Emmanuel FayemiEmail author
  • Martin Gilles
  • Claude Gazo
Conference paper
Part of the IFIP Advances in Information and Communication Technology book series (IFIPAICT, volume 541)

Abstract

The present research primarily focuses on building an effective rationalization of the knowledge which can be extracted from biological experts. To achieve such results, a structural framework, allowing knowledge integration from different fields at specific phases of the creative process is proposed. The formalized methodology along with its associated frameworks relies on principles from C-K Theory, TRIZ, and their links with biologically inspired design.

To assess such design process methodology, an initial application within a case study has been implemented. This case study has been conducted through an industrial partnership with a Research & Development service department from a company working in the offshore oil production sector.

But more than the concepts themselves, this new approach of biologically inspired design has emphasized, within this study case, an interesting potential in its propensity to quickly guide designers in accessing the most relevant knowledge from the biological field.

Keywords

Bio-inspired design TRIZ CK Methodology Innovation 

References

  1. 1.
    Benyus, J.M.: Biomimicry: Innovation Inspired by Nature (1997)Google Scholar
  2. 2.
    Smith, M.H.: The Natural Advantage of Nations: Business Opportunities, Innovation and Governance in the 21st Century. Earthscan, London (2013)CrossRefGoogle Scholar
  3. 3.
    Fayemi, P.-E.: Innovation par la conception bio-inspirée: proposition d’un modèle structurant les méthodes biomimétiques et formalisation d’un outil de transfert de connaissances. Dissertation, ENSAM, Paris (2016)Google Scholar
  4. 4.
    Wanieck, K., Fayemi, P.-E., Jacobs, S.: Biomimetics and its tools (2017)Google Scholar
  5. 5.
    Speck, T., Harder, D., Speck, O.: BIOKON centers in brief–Freiburg. In: BIOKON Bionik-Kompetenz-Netz–Creative Transfer of Biological Principles into Engineering, pp. 42–43 (2006)Google Scholar
  6. 6.
    Vattam, S., Helms, M.E., Goel, A.K.: Biologically-inspired innovation in engineering design: a cognitive study (2007)Google Scholar
  7. 7.
    Gebeshuber, I.C., Drack, M.: An attempt to reveal synergies between biology and mechanical engineering. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 222, 1281–1287 (2008)CrossRefGoogle Scholar
  8. 8.
    Baumeister, D., Tocke, R., Dwyer, J., Ritter, S.: Biomimicry Resource Handbook: A Seed Bank of Best Practices. Biomimicry 3.8, Missoula (2013)Google Scholar
  9. 9.
    ISO/TC266: Biomimetics - terminology, concepts and methodology, ISO 18458:2015. Beuth Verlag, Berlin (2015)Google Scholar
  10. 10.
    Goel, A.K., Vattam, S., Wiltgen, B., Helms, M.: Information-processing theories of biologically inspired design. In: Goel, A., McAdams, D., Stone, R. (eds.) Biologically Inspired Design, pp. 127–152. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-1-4471-5248-4_6CrossRefGoogle Scholar
  11. 11.
    Jacobs, S.R., Nichol, E.C., Helms, M.E.: “Where are we now and where are we going?” The BioM innovation database. J. Mech. Des. 136, 111101 (2014)CrossRefGoogle Scholar
  12. 12.
    Helms, M., Vattam, S.S., Goel, A.K.: Biologically inspired design: process and products. Des. Stud. 30, 606–622 (2009)CrossRefGoogle Scholar
  13. 13.
    Bogatyrev, N.R., Vincent, J.F. Microfluidic actuation in living organisms: a biomimetic catalogue. In: Proceedings of the First European Conference on Microfluidics, Bologna, p. 175 (2008)Google Scholar
  14. 14.
    Vincent, J.F., Bogatyreva, O.A., Bogatyrev, N.R., Bowyer, A., Pahl, A.-K.: Biomimetics: its practice and theory. J. R. Soc. Interface 3, 471–482 (2006)CrossRefGoogle Scholar
  15. 15.
    Forniés, I.L., Muro, L.B.: A top-down biomimetic design process for product concept generation. Int. J. Des. Nat. Ecodynamics 7(1), 27–48 (2012)CrossRefGoogle Scholar
  16. 16.
    Gramann, J., Lindemann, U.: Engineering design using biological principles. In: International Design Conference. The Design Society, Dubrovnik (2004)Google Scholar
  17. 17.
    Sartori, J., Pal, U., Chakrabarti, A.: A methodology for supporting “transfer” in biomimetic design. AI EDAM 24(4), 483–506 (2010)Google Scholar
  18. 18.
    Lenau, T.A.: Biomimetics as a design methodology-possibilities and challenges. In: DS 58-5: Proceedings of ICED 09, the 17th International Conference on Engineering Design, vol. 5, Design Methods and Tools (pt. 1), Palo Alto, CA, USA, 24–27 August 2009, pp. 121–132 (2009)Google Scholar
  19. 19.
    Schild, K., Herstatt, C., Lüthje, C.: How to use analogies for breakthrough innovations (No. 24). Working Papers/Technologie-und Innovations management. Technische Universität Hamburg-Harburg (2004)Google Scholar
  20. 20.
    Massey, A.P., Wallace, W.A.: Understanding and facilitating group problem structuring and formulation: Mental representations, interaction, and representation aids. Decis. Support Syst. 17(4), 253–274 (1996)CrossRefGoogle Scholar
  21. 21.
    Savransky, S.D.: Engineering of Creativity: Introduction to TRIZ Methodology of Inventive Problem Solving. CRC Press, Boca Raton (2000)CrossRefGoogle Scholar
  22. 22.
    Altshuller, G., Alʹtov, G., Altov, H.: And Suddenly the Inventor Appeared: TRIZ, the Theory of Inventive Problem Solving. Technical Innovation Center Inc., Worcester (1996)Google Scholar
  23. 23.
    Dupont, G.: TRIZ ou comment stimuler l’innovation en R&D. Société des Ingénieurs de l’Automobile (2002)Google Scholar
  24. 24.
    Rasovska, I., Dubois, S., De Guio, R.: Comparaison des modes de résolution de méthodes d’optimisation et d’invention (2009)Google Scholar
  25. 25.
    Hatchuel, A., Weil, B.: CK theory. In: Proceedings of the Herbert Simon International Conference on Design Sciences, vol. 15, p. 16, March 2002Google Scholar
  26. 26.
    Le Masson, P., Weil, B., Hatchuel, A.: Les processus d’innovation: Conception innovante et croissance des entreprises. Lavoisier, Paris (2006)Google Scholar
  27. 27.
    Altshuller, G.S., Victory, A.M.: Algorithm of inventive problem solving (ARIZ-85C). In: Methodological materials for trainees of the seminar “Methods of solving scientific and engineering problems”-L.: Leningrad Metal Works (1985)Google Scholar
  28. 28.
    de la Bretesche, B. (ed.): La méthode APTE: Analyse de la valeur, analyse fonctionnelle. Ed. Pétrelle, Paris (2000)Google Scholar
  29. 29.
    Chauvel, M.: Rapport de projet de recherche au LCPI. Short and Long Term Innovation Tools for Oil & Gas Offshore Challenges (2015)Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Pierre-Emmanuel Fayemi
    • 1
    Email author
  • Martin Gilles
    • 2
    • 3
  • Claude Gazo
    • 2
  1. 1.Active Innovation ManagementLevallois-PerretFrance
  2. 2.Laboratoire Conception de Produits et Innovation, ENSAMParisFrance
  3. 3.Ecole de Biologie IndustrielleCergyFrance

Personalised recommendations