Advertisement

Modeling and Verification of Component Connectors

  • Xiyue ZhangEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11232)

Abstract

Connectors have shown their great potential for coordination of different components in the large-scale distributed systems. Formal modeling and verification of connectors becomes more critical due to the rapid growth of the size of connectors. In this paper, we present a novel modeling and verification approach of Reo connectors in Coq, including the timed and probabilistic extensions of Reo. When failing to prove whether a property is satisfiable or not with Coq, Z3 solver can be used to generate counterexamples automatically. To promote automated theorem proving in Coq, we proposed an approach based on recurrent neural networks (RNNs) to predict tactics in the proving process.

Keywords

Connector Verification Coq 

Notes

Acknowledgement

The work was partially supported by the National Natural Science Foundation of China under grant no. 61772038, 61532019, 61202069 and 61272160.

References

  1. 1.
    Arbab, F.: Reo: a channel-based coordination model for component composition. Math. Struct. Comput. Sci. 14(3), 329–366 (2004)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arbab, F., Baier, C., de Boer, F., Rutten, J.: Models and temporal logics for timed component connectors. In: Cuellar, J.R., Liu, Z. (eds.) Proceedings of SEFM 2004, pp. 198–207. IEEE Computer Society (2004)Google Scholar
  3. 3.
    Baier, C., Sirjani, M., Arbab, F., Rutten, J.: Modeling component connectors in Reo by constraint automata. Sci. Comput. Program. 61, 75–113 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bridge, J.P., Holden, S.B., Paulson, L.C.: Machine learning for first-order theorem proving - learning to select a good heuristic. J. Autom. Reason. 53(2), 141–172 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R., Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-78800-3_24CrossRefGoogle Scholar
  6. 6.
    Hong, W., Nawaz, M.S., Zhang, X., Li, Y., Sun, M.: Using Coq for formal modeling and verification of timed connectors. In: Cerone, A., Roveri, M. (eds.) SEFM 2017. LNCS, vol. 10729, pp. 558–573. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-74781-1_37CrossRefGoogle Scholar
  7. 7.
    Huet, G., Kahn, G., Paulin-Mohring, C.: The Coq proof assistant a tutorial. Rapport Technique, vol. 178 (1997)Google Scholar
  8. 8.
    Jongmans, S.T.Q., Arbab, F.: Overview of thirty semantic formalisms for Reo. Sci. Ann. Comput. Sci. 22(1), 201–251 (2012)MathSciNetGoogle Scholar
  9. 9.
    Kaliszyk, C., Mamane, L., Urban, J.: Machine learning of coq proof guidance: first experiments. In: Proceedings of SCSS 2014. EPiC Series in Computing, vol. 30, pp. 27–34. EasyChair (2014)Google Scholar
  10. 10.
    Kokash, N., Krause, C., de Vink, E.: Reo+mCRL2: a framework for model-checking dataflow in service compositions. Form. Asp. Comput. 24, 187–216 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Li, Y., Sun, M.: Modeling and verification of component connectors in Coq. Sci. Comput. Program. 113(3), 285–301 (2015)CrossRefGoogle Scholar
  12. 12.
    Loos, S.M., Irving, G., Szegedy, C., Kaliszyk, C.: Deep network guided proof search. In: Proceedings of LPAR 2017. EPiC Series in Computing, vol. 46, pp. 85–105. EasyChair (2017)Google Scholar
  13. 13.
    Sun, M., Arbab, F., Aichernig, B.K., Astefanoaei, L., de Boer, F.S., Rutten, J.: Connectors as designs: modeling, refinement and test case generation. Sci. Comput. Program. 77(7–8), 799–822 (2012)zbMATHGoogle Scholar
  14. 14.
    Sun, M., Zhang, X.: A relational model for probabilistic connectors based on timed data distribution streams. In: Jansen, D.N., Prabhakar, P. (eds.) FORMATS 2018. LNCS, vol. 11022, pp. 125–141. Springer, Cham (2018).  https://doi.org/10.1007/978-3-030-00151-3_8CrossRefGoogle Scholar
  15. 15.
    Zhang, X., Hong, W., Li, Y., Sun, M.: Reasoning about connectors in Coq. In: Kouchnarenko, O., Khosravi, R. (eds.) FACS 2016. LNCS, vol. 10231, pp. 172–190. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-57666-4_11CrossRefGoogle Scholar
  16. 16.
    Zhang, X., Sun, M.: Towards formal modeling and verification of probabilistic connectors in Coq. In: Proceedings of SEKE 2018, pp. 385–390. KSI Research Inc. and Knowledge Systems Institute Graduate School (2018)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Informatics and LMAM, School of Mathematical SciencesPeking UniversityBeijingChina

Personalised recommendations