The Power of Synchronisation: Formal Analysis of Power Consumption in Networks of Pulse-Coupled Oscillators

  • Paul Gainer
  • Sven LinkerEmail author
  • Clare Dixon
  • Ullrich Hustadt
  • Michael Fisher
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 11232)


Nature-inspired synchronisation protocols have been widely adopted to achieve consensus within wireless sensor networks. We analyse the power consumption of such protocols, particularly the energy required to synchronise all nodes across a network. We use the model of bio-inspired, pulse-coupled oscillators to achieve network-wide synchronisation and provide an extended formal model of just such a protocol, enhanced with structures for recording energy usage. Exhaustive analysis is then carried out through formal verification, utilising the PRISM model-checker to calculate the resources consumed on each possible system execution. This allows us to investigate a range of parameter instantiations and the trade-offs between power consumption and time to synchronise. This provides a principled basis for the formal analysis of a broader range of large-scale network protocols.


Probabilistic verification Synchronisation Wireless sensor nets 


  1. 1.
    Albers, S.: Energy-efficient algorithms. Commun. ACM 53(5), 86–96 (2010)CrossRefGoogle Scholar
  2. 2.
    Bartocci, E., Corradini, F., Merelli, E., Tesei, L.: Detecting synchronisation of biological oscillators by model checking. Theor. Comput. Sci. 411(20), 1999–2018 (2010)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bojic, I., Lipic, T., Kusek, M.: Scalability issues of firefly-based self-synchronization in collective adaptive systems. In: Proceedings of SASOW 2014, pp. 68–73. IEEE (2014)Google Scholar
  4. 4.
    Bortolussi, L., Hillston, J.: Efficient checking of individual rewards properties in Markov population models. In: QAPL 2015. EPTCS, vol. 194, pp. 32–47. Open Publishing Association (2015)Google Scholar
  5. 5.
    Donaldson, A.F., Miller, A.: Symmetry reduction for probabilistic model checking using generic representatives. In: Graf, S., Zhang, W. (eds.) ATVA 2006. LNCS, vol. 4218, pp. 9–23. Springer, Heidelberg (2006). Scholar
  6. 6.
    Emerson, E.A., Trefler, R.J.: From asymmetry to full symmetry: new techniques for symmetry reduction in model checking. In: Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 142–157. Springer, Heidelberg (1999). Scholar
  7. 7.
    Fatès, N.: Remarks on the cellular automaton global synchronisation problem. In: Kari, J. (ed.) AUTOMATA 2015. LNCS, vol. 9099, pp. 113–126. Springer, Heidelberg (2015). Scholar
  8. 8.
    Gainer, P., Dixon, C., Hustadt, U.: Probabilistic model checking of ant-based positionless swarming. In: Alboul, L., Damian, D., Aitken, J.M.M. (eds.) TAROS 2016. LNCS (LNAI), vol. 9716, pp. 127–138. Springer, Cham (2016). Scholar
  9. 9.
    Gainer, P., Linker, S., Dixon, C., Hustadt, U., Fisher, M.: Investigating parametric influence on discrete synchronisation protocols using quantitative model checking. In: Bertrand, N., Bortolussi, L. (eds.) QEST 2017. LNCS, vol. 10503, pp. 224–239. Springer, Cham (2017). Scholar
  10. 10.
    Hansson, H., Jonsson, B.: A logic for reasoning about time and reliability. FAC 6(5), 512–535 (1994)zbMATHGoogle Scholar
  11. 11.
    Heidarian, F., Schmaltz, J., Vaandrager, F.: Analysis of a clock synchronization protocol for wireless sensor networks. Theor. Comput. Sci. 413(1), 87–105 (2012)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Konishi, K., Kokame, H.: Synchronization of pulse-coupled oscillators with a refractory period and frequency distribution for a wireless sensor network. Chaos: Interdisciplinary J. Nonlinear Sci. 18(3) (2008)CrossRefGoogle Scholar
  13. 13.
    Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: Araki, H. (ed.) International Symposium on Mathematical Problems in Theoretical Physics. LNP, vol. 39, pp. 420–422. Springer, Heidelberg (1975)CrossRefGoogle Scholar
  14. 14.
    Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 585–591. Springer, Heidelberg (2011). Scholar
  15. 15.
    Lucarelli, D., Wang, I.J., et al.: Decentralized synchronization protocols with nearest neighbor communication. In: Proceedings of SenSys 2004, pp. 62–68. ACM (2004)Google Scholar
  16. 16.
    MEMSIC Inc.: MICAz datasheet. Accessed 15 Jan 2018
  17. 17.
    Mirollo, R.E., Strogatz, S.H.: Synchronization of pulse-coupled biological oscillators. SIAM J. Appl. Math. 50(6), 1645–1662 (1990)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Peskin, C.: Mathematical aspects of heart physiology. Courant Lecture Notes , Courant Institute of Mathematical Sciences, New York University (1975)Google Scholar
  19. 19.
    Rhee, I.K., Lee, J., Kim, J., Serpedin, E., Wu, Y.C.: Clock synchronization in wireless sensor networks: an overview. Sensors 9(1), 56–85 (2009)CrossRefGoogle Scholar
  20. 20.
    Rhee, S., Seetharam, D., Liu, S.: Techniques for minimizing power consumption in low data-rate wireless sensor networks. In: Proceedings of WCNC 2004, pp. 1727–1731. IEEE (2004)Google Scholar
  21. 21.
    Soua, R., Minet, P.: A survey on energy efficient techniques in wireless sensor networks. In: Proceedings of WMNC 2011, pp. 1–9. IEEE (2011)Google Scholar
  22. 22.
    Wang, Y., Nuñez, F., Doyle, F.J.: Energy-efficient pulse-coupled synchronization strategy design for wireless sensor networks through reduced idle listening. IEEE Trans. Sig. Process. 60(10), 5293–5306 (2012)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yick, J., Mukherjee, B., Ghosal, D.: Wireless sensor network survey. Comput. Netw. 52(12), 2292–2330 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.University of LiverpoolLiverpoolUK

Personalised recommendations