Advertisement

Combinational Circuits

  • Christian Posthoff
  • Bernd Steinbach
Chapter

Abstract

The analysis, synthesis, and test of combinational circuits is a major field of applications of logic functions and equations. We introduce models which can be used to describe either the behavior or the structure of several realizations of combinational circuits. Based on these models we provide methods for the fundamental analysis task and the calculation of the behavior of a given circuit structure. Additionally, several analysis tasks will be solved. There are two main approaches for the synthesis of combinational circuits: covering and decomposition methods. Covering methods are widely used for the synthesis of several types of two-level circuit structures. Due to restrictions of the technology covering methods are suitable for circuits of a small number of variables. We give an overview of these methods and demonstrate their application by means of synthesis examples. Decomposition methods facilitate the synthesis of multilevel circuits for larger numbers of variables, and their theory is more complicated. We give an overview of different decomposition methods and explain the newest results with regard to strong, weak, and vectorial bi-decompositions for both single logic functions and lattices of logic functions. We explain new possibilities of bi-decompositions utilizing the extensions of the Boolean Differential Calculus, provided in this book. The test of combinational circuits is needed to discard circuits which do not show the expected behavior. The basic method to calculate the needed test pattern uses the network model of the sensible path. Due to some drawbacks of this model we suggest the network model of the sensible point for internal signals and internal branches. Using this new model test patterns for all non-redundant gate connection in the circuit can be computed. The provided synthesis by mean of bi-decompositions leads to completely testable circuits and allows the generation of the test patterns in parallel to the synthesis of the circuit.

References

  1. 1.
    Ashenhurst, R.L.: The decomposition of switching functions. In: Annals of Computation Laboratory, vol. 29, pp. 74–116. Harvard University, Cambridge (1959)Google Scholar
  2. 6.
    Bochmann, D., Dresig, F., Steinbach, B.: A new approach for multilevel circuit design. In: European Conference on Design Automation, EURODAC ’91, pp. 374–377. IEEE Computer Society Press, Amsterdam (1991). ISBN: 0-8186-2130-3Google Scholar
  3. 7.
    Böhlau, P.: A decomposition strategy for the logic design based on properties of the function. Ph.D. thesis, Technical University Karl-Marx-Stadt, Karl-Marx-Stadt (1987). Eine Dekompositionsstrategie für den Logikentwurf auf der Basis funktionstypischer Eigenschaften (in German)Google Scholar
  4. 14.
    Curtis, H.A.: A New Approach to the Design of Switching Circuits. Van Nostrand, Princeton (1962)Google Scholar
  5. 19.
    Khatri, S., Gulati, K. (eds.): Advanced Techniques in Logic Synthesis, Optimizations and Applications, vol. 211. Springer, New York. ISBN: 978-1-4419-7517-1. https://doi.org/10.1007/978-1-4419-7518-8 Google Scholar
  6. 20.
    Le, T.: Testability of combinational circuits—theory and design. Ph.D. thesis, Technical University Karl-Marx-Stadt, Karl-Marx-Stadt (1989). Testbarkeit kombinatorischer Schaltungen—Theorie und Entwurf (in German)Google Scholar
  7. 24.
    Mishenko, A., Steinbach, B., Perkowski, M.: An algorithm for bi-decomposition of logic functions. In: Proceedings on the 38th Design Automation Conference. DAC 28, pp. 18–22. IEEE Computer Society Press, Las Vegas (2001). ISBN: 1-58113-297-2.  https://doi.org/10.1109/DAC.2001.156117
  8. 28.
    Povarov, G.N.: About functional decomposition of Boolean functions. Rep. Acad. Sci. USSR. DAN 94(5), 801–803 (1954) (in Russian)MathSciNetGoogle Scholar
  9. 33.
    Sasao, T., Butler, J.: On bi-decompositions of logic functions. In: Proceedings of International Workshop on Logic Synthesis 1997, IWLS, Lake Tahoe City (1997)Google Scholar
  10. 38.
    Steinbach, B.: XBOOLE—a toolbox for modelling, simulation, and analysis of large digital systems. Syst. Anal. Model. Simul. 9(4), 297–312 (1992). ISSN: 0232-9298Google Scholar
  11. 40.
    Steinbach, B.: Decomposition using decision diagrams. In: Yanushkevich, S., et al. (eds.) Decision Diagram Technique for Micro- and Nanoelectronic Design, Handbook, pp. 59–544. CRC Press, Boca Raton (2006). ISBN: 0-8493-3424-1Google Scholar
  12. 43.
    Steinbach, B.: Relationships between vectorial bi-decompositions and strong EXORBiDecompositions. In: Proceedings of the 25th International Work-shop on Post-Binary ULSI Systems. ULSI 25, Sapporo, Hokkaido, 2016Google Scholar
  13. 45.
    Steinbach, B., Hilbert, R.: Fast test patterns generation using the Boolean differential calculus. In: Bochmann, D., Ubar, R. (eds.) Errors in Finite State Machines. Schnelle Testsatzgenerierung gestützt auf den Booleschen Differentialkalkül. Fehler in Automaten (in German), pp. 45–90. Verlag Technik, Berlin (1989). ISBN: 3-341-00683-4Google Scholar
  14. 46.
    Steinbach, B., Lang, C.: Exploiting functional properties of Boolean functions for optimal multi-level design by bi-decomposition. In: Yanushkevich, S. (ed.) Artificial Intelligence in Logic Design. SECS 766, pp. 159–200. Springer, Dordrecht (2004). ISBN: 978-90-481-6583-4. https://doi.org/1.1007/978-1-4020-2075-9_6 CrossRefGoogle Scholar
  15. 48.
    Steinbach, B., Posthoff, C.: Logic Functions and Equations - Examples and Exercises. Springer, Berlin (2009). ISBN: 978-1-4020-9594-8zbMATHGoogle Scholar
  16. 64.
    Steinbach, B., Posthoff, C.: Vectorial bi-decompositions of logic functions. In: Proceedings of the Reed-Muller Workshop 2015, RM, Waterloo (2015)Google Scholar
  17. 65.
    Steinbach, B., Posthoff, C.: Vectorial bi-decompositions for lattices of Boolean functions. In: Steinbach, B. (ed.) Boolean Problems, Proceedings of the 12th International Workshops on Boolean Problems, IWSBP 12, Sept. 2016, pp. 93–104. Freiberg University of Mining and Technology, Freiberg (2016). ISBN: 978-3-86012-488-8Google Scholar
  18. 67.
    Steinbach, B., Posthoff, C.: Compact XOR-bi-decomposition for generalized lattices of Boolean functions. In: Proceedings Reed-Muller Workshop 2017, RM 13, Novi Sad (2017)Google Scholar
  19. 68.
    Steinbach, B., Posthoff, C.: Vectorial bi-decompositions for lattices of Boolean functions. In: Steinbach, B. (ed.) Further Improvements in the Boolean Domain, pp. 175–198. Cambridge Scholars Publishing, Newcastle upon Tyne (2018). ISBN: 978-1-5275-0371-7Google Scholar
  20. 69.
    Steinbach, B., Stöckert, M.: Design of fully testable circuits by functional decomposition and implicit test pattern generation. In: Proceedings of 12th IEEE VLSI Test Symposium. VTS 12, Cherry Hill (1994)Google Scholar
  21. 72.
    Steinbach, B., Zakrevski, A.: Three models and some theorems on decomposition of Boolean functions. In: Steinbach, B. (eds.) Boolean Problems, Proceedings of the 3rd International Workshops on Boolean Problems. IWSBP 3, Sept. 1998, pp. 11–18. Freiberg University of Mining and Technology, Freiberg (1998). ISBN: 3-86012-069-7Google Scholar

Copyright information

© Springer International Publishing AG 2019

Authors and Affiliations

  • Christian Posthoff
    • 1
  • Bernd Steinbach
    • 2
  1. 1.Computing and Information TechnologyUniversity of the West Indies (retired)ChemnitzGermany
  2. 2.Computer ScienceTU Bergakademie Freiberg (retired)ChemnitzGermany

Personalised recommendations