Advertisement

Nanomaterials in the Development of Biosensor and Application in the Determination of Pollutants in Water

  • Germán A. Messina
  • Matías Regiart
  • Sirley V. Pereira
  • Franco A. Bertolino
  • Pedro R. Aranda
  • Julio Raba
  • Martín A. Fernández-BaldoEmail author
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

In the last years, nanotechnologies have contributed to the development of miniaturized biosensor-based devices with high-throughput analytical properties. Biosensors technology is taking advantage of the latest developments in materials science. Nanomaterials with sizes or features ranging from 1 to 100 nm in one or more dimensions are the core of an emerging technological revolution. They show unique properties not found in conventional materials, such as light absorption and dispersion, high surface area to volume ratio, superior electrical conductivity, magnetic property, and unique physicochemical features which have promoted the usage of nanomaterials as catalytic tools, optical or electroactive labels, and immobilization platforms of biomolecules to enhance the biosensing performance to gain higher sensitivity, stability, and selectivity. This chapter focuses on the application of biosensors with incorporated nanotechnology in the determination of pollutants in water samples.

Keywords

Nanotechnology Nanomaterials Biosensors Pollutants Water 

Notes

Acknowledgments

The authors wish to thank the financial support from Universidad Nacional de San Luis (PROICO-1512-22/Q232), Agencia Nacional de Promoción Científica y Tecnológica (PICT-2015-2246, PICT-2015-1575, PICT-2014-1184, PICT-2014-0375 and PICT-2013-3092) and Consejo Nacional de Investigaciones Científicas y Técnicas (PIP- 11220150100004CO).

References

  1. Afkhami A, Khoshsafar H, Bagheri H, Madrakian T (2014a) Construction of a carbon ionic liquid paste electrode based on multi-walled carbon nanotubes-synthesized Schiff base composite for trace electrochemical detection of cadmium. Mater Sci Eng C 35:8–14CrossRefGoogle Scholar
  2. Afkhami A, Soltani-Felehgari F, Madrakian T (2014b) Highly sensitive and selective determination of thiocyanate using gold nanoparticles surface decorated multi-walled carbon nanotubes modified carbon paste electrode. Sensor Actuat B Chem 196:467–474CrossRefGoogle Scholar
  3. Akbarzadeh A, Samiei M, Davaran S (2012) Magnetic nanoparticles: preparation, physical properties, and applications in biomedicine. Nanoscale Res Lett 7:1–13CrossRefGoogle Scholar
  4. Arain MB, Ali I, Yilmaz E, Soylak M (2018) Nanomaterial’s based chromium speciation in environmental samples: a review. TrAC Trends Anal Chem 103:44–55CrossRefGoogle Scholar
  5. Arlett JL, Myers EB, Roukes ML (2011) Comparative advantages of mechanical biosensors. Nat Nanotechnol 6:203–215PubMedCrossRefPubMedCentralGoogle Scholar
  6. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612.  https://doi.org/10.1021/acs.langmuir.5b03081CrossRefPubMedPubMedCentralGoogle Scholar
  7. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984.  https://doi.org/10.3389/fmicb.2016.01984CrossRefPubMedPubMedCentralGoogle Scholar
  8. Balasubramanian K, Burghard M (2006) Biosensors based on carbon nanotubes. Anal Bioanal Chem 3:452–468CrossRefGoogle Scholar
  9. Bapat G, Labade C, Chaudhari A, Zinjarde S (2016) Silica nanoparticle based techniques for extraction, detection, and degradation of pesticides. Adv Colloid Interf Sci 237:1–14CrossRefGoogle Scholar
  10. Besteman K, Lee JO, Wiertz FGM, Heering HA, Dekker C (2003) Enzyme-coated carbon nanotubes as single-molecule biosensors. Nano Lett 6:727–730CrossRefGoogle Scholar
  11. Bidmanova S, Kotlanova M, Rataj T, Damborsky J, Trtilek M, Prokop Z (2016) Fluorescence-based biosensor for monitoring of environmental pollutants: from concept to field application. Biosens Bioelectron 84:97–105PubMedCrossRefPubMedCentralGoogle Scholar
  12. Bonilla JC, Bozkurt F, Ansari S, Sozer N, Kokini JL (2016) Applications of quantum dots in food science and biology. Trends Food Sci Technol 53:75–89CrossRefGoogle Scholar
  13. Bravo K, Ortega FG, Messina GA, Sanz MI, Fernández Baldo MA, Raba J (2017) Integrated bio-affinity nano-platform into a microfluidic immunosensor based on monoclonal bispecific trifunctional antibodies for the electrochemical determination of epithelial cancer biomarker. Clin Chim Acta 464:64–71PubMedCrossRefPubMedCentralGoogle Scholar
  14. Chamjangali MA, Kouhestani H, Masdarolomoor F, Daneshinejad H (2015) A voltammetric sensor based on the glassy carbon electrode modified with multiwalled carbon nanotube/poly(pyrocatechol violet)/bismuth film for determination of cadmium and lead as environmental pollutants. Sensor Actuat B Chem 216:384–393CrossRefGoogle Scholar
  15. Chen J, Zhu X (2015) Ionic liquid coated magnetic core/shell Fe3O4@SiO2 nanoparticles for the separation/analysis of linuron in food samples. Spectrochim Acta Part A 137:456–462CrossRefGoogle Scholar
  16. Choi J, Oh B, Kim Y, Min JU (2007) Nanotechnology in biodevices. J Microb Biot 17:5–14Google Scholar
  17. Devasenathipathy R, Mani V, Chen S, Arulraj D, Vasantha V (2014) Highly stable and sensitive amperometric sensor for the determination of trace level hydrazine at cross linked pectin stabilized gold nanoparticles decorated graphene nanosheets. Electrochim Acta 135:260–269CrossRefGoogle Scholar
  18. Dong Y, Tian W, Ren S, Dai R, Chi Y, Chen G (2014) Graphene quantum dots/l-cysteine coreactant electrochemiluminescence system and its application in sensing lead(II) ions. ACS Appl Mater Interfaces 6:1646–1651PubMedCrossRefPubMedCentralGoogle Scholar
  19. Faraz M, Abbasi A, Naqvi FK, Khare N, Prasad R, Barman I, Pandey R (2018) Polyindole/CdS nanocomposite based turn-on, multi-ion fluorescence sensor for detection of Cr3+, Fe3+ and Sn2+ ions. Sens Actuat B 269:195–202.  https://doi.org/10.1016/j.snb.2018.04.110CrossRefGoogle Scholar
  20. Farré M, Sanchís J, Barcelo D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. TrAC Trends Anal Chem 30:517–527CrossRefGoogle Scholar
  21. Fernández Baldo MA, Messina GA, Sanz MI, Raba J (2009) Screen-printed immunosensor modified with carbon nanotubes in a continuous-flow system for the Botrytis cinerea determination in apple tissues. Talanta 79:681–686PubMedCrossRefPubMedCentralGoogle Scholar
  22. Gajanan K, Tijare SN (2018) Applications of nanomaterials. Mater Today Proceed 5:1093–1096CrossRefGoogle Scholar
  23. Han J, Li Y, Feng J, Li M, Wang P, Chen Z, Dong Y (2017) A novel sandwich-type immunosensor for detection of carcino-embryonic antigen using silver hybrid multiwalled carbon nanotubes/manganese dioxide. J Electroanal Chem 786:112–119CrossRefGoogle Scholar
  24. Hasan M, Ullah I, Zulfiqar H, Naeem K, Iqbal A, Gul H, Ashfaq M, Mahmood N (2018) Biological entities as chemical reactors for synthesis of nanomaterials: Progress, challenges and future perspective. Mater Today Chem 8:13–28CrossRefGoogle Scholar
  25. Hayat A, Rhouati A, Mishra RK, Alonso GA, Nasir M, Istamboulie G, Marty JL (2016) An electrochemical sensor based on TiO2/activated carbon nanocomposite modified screen printed electrode and its performance for phenolic compounds detection in water samples. Int J Environ Anal Chem 3:237–246CrossRefGoogle Scholar
  26. Hu F, Chen S, Wang C, Yuan R, Yuan D, Wang C (2012) Study on the application of reduced graphene oxide and multiwall carbon nanotubes hybrid materials for simultaneous determination of catechol, hydroquinone, p-cresol and nitrite. Anal Chim Acta 724:40–46PubMedCrossRefPubMedCentralGoogle Scholar
  27. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  28. Jarque S, Bittner M, Blaha L, Hilscherova K (2016) Yeast biosensors for detection of environmental pollutants: current state and limitations. Trends Biotechnol 34:408–419PubMedCrossRefPubMedCentralGoogle Scholar
  29. Jiao S, Jin J, Wang L (2015) One-pot preparation of Au-RGO/PDDA nanocomposites and their application for nitrite sensing. Sensor Actuat B Chem 208:36–42CrossRefGoogle Scholar
  30. Jun S, Joo SH, Ryoo R, Kruk M, Jaroniec M, Liu Z, Ohsuna T, Terasaki O (2000) Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure. J Am Chem Soc 122:10712–10713CrossRefGoogle Scholar
  31. Justino CIL, Rocha-Santos TAP, Cardoso S, Duarte AC (2013) Strategies for enhancing the analytical performance of nanomaterial-based sensors. Trends Anal Chem 47:27–36CrossRefGoogle Scholar
  32. Kangkamano T, Numnuam A, Limbut W, Kanatharana P, Thavarungkul P (2017) Chitosan cryogel with embedded gold nanoparticles decorated multiwalled carbon nanotubes modified electrode for highly sensitive flow based non-enzymatic glucose sensor. Sens Actuat B Chem 246:854–863CrossRefGoogle Scholar
  33. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359:710–712CrossRefGoogle Scholar
  34. Kurbanoglu S, Ozkan SA, Merkoçi A (2017) Nanomaterials-based enzyme electrochemical biosensors operating through inhibition for biosensing applications. Biosens Bioelectron 89:886–898PubMedCrossRefPubMedCentralGoogle Scholar
  35. Lai T, Cai W, Du H, Ye J (2014) Fe3O4 microspheres and graphene oxide encapsulated with chitosan: a new platform for sensitive determination of hydroquinone and catechol. Electroanalysis 26:216–222CrossRefGoogle Scholar
  36. Lan L, Yao Y, Ping J, Ying Y (2017) Recent advances in nanomaterial-based biosensors for antibiotics detection. Biosens Bioelectron 91:504–514PubMedCrossRefPubMedCentralGoogle Scholar
  37. Lawal AT (2016) Synthesis and utilization of carbon nanotubes for fabrication of electrochemical biosensors. Mater Res Bull 73:308–350CrossRefGoogle Scholar
  38. Lee J, Hyeon T (2006) Recent progress in the synthesis of porous carbon materials. Adv Mater 18:2073–2094CrossRefGoogle Scholar
  39. Lei W, Han Z, Si W, Hao Q, Zhang Y, Xia M, Wang F (2014) Sensitive and selective detection of imidacloprid by graphene-oxide-modified glassy carbon electrode. Chem Electro Chem 6:1063–1067Google Scholar
  40. Li J, Feng H, Li J, Jiang J, Feng Y, He L, Qian D (2015a) Bimetallic Ag-Pd nanoparticles-decorated graphene oxide: a fascinating three-dimensional nanohybrid as an efficient electrochemical sensing platform for vanillin determination. Electrochim Acta 176:827–835CrossRefGoogle Scholar
  41. Li X, Zhao C, Liu X (2015b) A paper-based microfluidic biosensor integrating zinc oxide nanowires for electrochemical glucose detection. Microsyst Nanoeng 1:1–7CrossRefGoogle Scholar
  42. Li Y, Feng S, Zhong Y, Li Y, Li S (2015c) Simultaneous and highly sensitive determination of hydroquinone and catechol using carboxyl functionalized graphene self-assembled monolayers. Electroanalysis 27:2221–2229CrossRefGoogle Scholar
  43. Li Z, Fu Y, Fang W, Li Y (2015d) Electrochemical impedance immunosensor based on self-assembled monolayers for rapid detection of Escherichia coli O157:H7 with signal amplification using lectin. Sensors 15:19212–19224PubMedCrossRefPubMedCentralGoogle Scholar
  44. Lian Y, Yuan M, Zhao H (2014) DNA wrapped metallic single-walled carbon nanotube sensor for Pb (II) detection. Fullerenes Nanotubes Carbon Nanostruct 22:510–518CrossRefGoogle Scholar
  45. Liang Y, Liu Y, Guo X, Ye P, Wen Y, Yang H (2014) Phytate functionalized multi-walled carbon nanotubes modified electrode for determining trace Cu(II) using differential normal pulse anodic stripping voltammetry. Sensor Actuat B Chem 201:107–113CrossRefGoogle Scholar
  46. Liu JM, Hu Y, Yang YK, Liu H, Fang GZ, Lu X, Wang S (2018) Emerging functional nanomaterials for the detection of food contaminants. Trends Food Sci Technol 71:94–106CrossRefGoogle Scholar
  47. Luo D, Wu L, Zhi J (2009) Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing. ACS Nano 3:2121–2128PubMedCrossRefPubMedCentralGoogle Scholar
  48. Lv M, Liu Y, Geng J, Kou X, Xin Z, Yang D (2018) Engineering nanomaterials-based biosensors for food safety detection. Biosens Bioelectron 106:122–128PubMedCrossRefPubMedCentralGoogle Scholar
  49. Mackenzie JD, Bescher EP (2007) Chemical routes in the synthesis of nanomaterials using the solegel process. Acc Chem Res 40:810–818PubMedCrossRefPubMedCentralGoogle Scholar
  50. Maduraiveeran G, Jin W (2017) Nanomaterials based electrochemical sensor and biosensor platforms for environmental applications. Trends Environ Anal Chem 13:10–23CrossRefGoogle Scholar
  51. Maduraiveeran G, Sasidharan M, Ganesan V (2018) Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens Bioelectron 103:113–129PubMedCrossRefPubMedCentralGoogle Scholar
  52. Martinez NA, Pereira SV, Bertolino FA, Schneider R, Messina GA, Raba J (2012) Electrochemical detection of a powerful estrogenic endocrine disruptor: Ethinylestradiol in water samples through bioseparation procedure. Anal Chim Acta 723:27–32PubMedCrossRefPubMedCentralGoogle Scholar
  53. Mishra A, Kumar J, Melo JS (2017) An optical microplate biosensor for the detection of methyl parathion pesticide using a biohybrid of Sphingomonas sp. cells-silica nanoparticles. Biosens Bioelectron 87:332–338PubMedCrossRefPubMedCentralGoogle Scholar
  54. Netto C, Toma HE, Andrade LH (2013) Superparamagnetic nanoparticles as versatile carriers and supporting materials for enzymes. J Mol Catal B Enzym 86:71–92CrossRefGoogle Scholar
  55. Niu P, Fernández-Sánchez C, Gich M, Navarro-Hernández C, Fanjul-Bolado P, Roig A (2016) Screen-printed electrodes made of a bismuth nanoparticle porous carbon nanocomposite applied to the determination of heavy metal ions. Microchim Acta 2:617–623CrossRefGoogle Scholar
  56. Noyrod P, Chailapakul O, Wonsawat W, Chuanuwatanakul S (2014) The simultaneous determination of isoproturon and carbendazim pesticides by single drop analysis using a graphene-based electrochemical sensor. J Electroanal Chem 719:54–59CrossRefGoogle Scholar
  57. Piguillem S, Ortega FG, Raba J, Messina GA, Fernández Baldo MA (2018) Development of a nanostructured electrochemical immunosensor applied to the early detection of invasive aspergillosis. Microchem J 139:394–400CrossRefGoogle Scholar
  58. Pistone A, Piperno A, Iannazzo D, Donato N, Latino M, Spadaro D, Neri G (2013) Fe3O4- MWCNT-PhCOOH composites for ammonia resistive sensors. Sensor Actuat B Chem 186:333–342CrossRefGoogle Scholar
  59. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  60. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330.  https://doi.org/10.1002/wnan.1363CrossRefGoogle Scholar
  61. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges, and perspectives. Front Microbiol 8:1014.  https://doi.org/10.3389/fmicb.2017.01014CrossRefPubMedPubMedCentralGoogle Scholar
  62. Pumera M (2011) Graphene-based nanomaterials for energy storage. Energy Environ Sci 4:668–674CrossRefGoogle Scholar
  63. Rahemi V, Vandamme J, Garrido J, Borges F, Brett C, Garrido E (2012) Enhanced host-guest electrochemical recognition of herbicide MCPA using a beta-cyclodextrin carbon nanotube sensor. Talanta 99:288–293PubMedCrossRefPubMedCentralGoogle Scholar
  64. Ramnani P, Saucedo N, Mulchandani A (2016) Carbon nanomaterial-based electrochemical biosensors for label-free sensing of environmental pollutants. Chemosphere 143:85–98PubMedCrossRefPubMedCentralGoogle Scholar
  65. Reddy LH, Arias JL, Nicolas J, Couvreur P (2012) Magnetic nanoparticles: design and characterization, toxicity and biocompatibility, pharmaceutical and biomedical applications. Chem Rev 112:5818–5878PubMedCrossRefPubMedCentralGoogle Scholar
  66. Regiart M, Escudero LA, Aranda P, Martinez NA, Bertolino FA, Raba J (2015) Copper nanoparticles applied to the preconcentration and electrochemical determination of β-adrenergic agonist: an efficient tool for the control of meat production. Talanta 135:138–144PubMedCrossRefPubMedCentralGoogle Scholar
  67. Regiart M, Magallanes JL, Barrera D, Villarroel-Rocha J, Sapag K, Raba J, Bertolino FA (2016) An ordered mesoporous carbon modified electrochemical sensor for solid-phase microextraction and determination of triclosan in environmental samples. Sensor Actuat B Chem 232:765–772CrossRefGoogle Scholar
  68. Regiart M, Rinaldi-Tosi M, Aranda P, Bertolino FA, Villarroel-Rocha J, Sapag K, Messina GA, Raba J, Fernández B (2017) Development of a nanostructured immunosensor for early and in situ detection of Xanthomonas arboricola in agricultural food production. Talanta 175:535–541PubMedCrossRefPubMedCentralGoogle Scholar
  69. Rocha TAP (2014) Sensors and biosensors based on magnetic nanoparticles. Trends Anal Chem 62:28–36CrossRefGoogle Scholar
  70. Sabela MI, Mpanza T, Kanchi S, Sharma D, Bisetty K (2016) Electrochemical sensing platform amplified with a nanobiocomposite of L-phenylalanine ammonia-lyase enzyme for the detection of capsaicin. Biosens Bioelectron 83:45–53PubMedCrossRefPubMedCentralGoogle Scholar
  71. Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 5:2739–2779CrossRefGoogle Scholar
  72. Scala-Benuzzi ML, Raba J, Soler I, Schneider RJ, Messina GA (2018a) Novel electrochemical paper-based immunocapture assay for the quantitative determination of ethinylestradiol in water samples. Anal Chem 90:4104–4111PubMedCrossRefPubMedCentralGoogle Scholar
  73. Scala-Benuzzi BM, Takara E, Alderete M, Soler IG, Schneider R, Raba J, Messina GA (2018b) Ethinylestradiol quantification in drinking water sources using a fluorescent paper-based immunosensor. Microchem J 141:287–293.  https://doi.org/10.1016/j.microc.2018.05.038CrossRefGoogle Scholar
  74. Sharma S, Zapatero RJ, Estrela P, O’Kennedy R (2015) Point-of-care diagnostics in low resource settings: present status and future role of microfluidics. Biosensors 5:577–601PubMedPubMedCentralCrossRefGoogle Scholar
  75. Shervedani R, Amini A, Sadeghi N (2016) Electrografting of thionine diazonium cation onto the graphene edges and decorating with Au nano-dendrites or glucose oxidase: characterization and electrocatalytic applications. Biosens Bioelectron 77:478–485PubMedCrossRefPubMedCentralGoogle Scholar
  76. Si W, Lei W, Han Z, Hao Q, Zhang Y, Xia M (2014) Selective sensing of catechol and hydroquinone based on poly(3,4-ethylenedioxythiophene)/nitrogen-doped graphene composites. Sensor Actuat B Chem 199:154–160CrossRefGoogle Scholar
  77. Stanisavljevic M, Krizkova S, Vaculovicova M, Kizek R, Adam V (2015) Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens Bioelectron 74:562–574PubMedCrossRefPubMedCentralGoogle Scholar
  78. Sudha V, Kumar A, Thangamuthu R (2018) Simultaneous electrochemical sensing of sulphite and nitrite on acid functionalized multi-walled carbon nanotubes modified electrodes. J Alloys Compd 749:990–999CrossRefGoogle Scholar
  79. Sun Z, Wang W, Wen H, Gan C, Lei H, Liu Y (2015) Sensitive electrochemical immunoassay for chlorpyrifos by using flake-like Fe3O4 modified carbon nanotubes as the enhanced multienzyme label. Anal Chim Acta 899:91–99PubMedCrossRefPubMedCentralGoogle Scholar
  80. Tansil NC, Gao Z (2006) Nanoparticles in biomolecular detection. Nano Today 1:28–37CrossRefGoogle Scholar
  81. Tehrani RMA, Ghadimi H, Ghani SA (2013) Electrochemical studies of two diphenols isomers at graphene nanosheet–poly(4-vinyl pyridine) composite modified electrode. Sensor Actuat B Chem 177:612–619CrossRefGoogle Scholar
  82. Tîlmaciu CM, Morris MC (2015) Carbon nanotube biosensors. Front Chem 3:1–21CrossRefGoogle Scholar
  83. Tovide O, Jahed N, Sunday C, Pokpas K, Ajayi R, Makelane H, Molapo K, John S, Baker P, Iwuoha E (2014) Electro-oxidation of anthracene on polyanilinographene composite electrode. Sensor Actuat B Chem 205:184–192CrossRefGoogle Scholar
  84. Turner A, Karube I, Wilson GS (1987) Biosensors: fundamentals and applications. Oxford University Press, Oxford, New York, p 770Google Scholar
  85. Vilian ATE, Chen SM, Chen YH, Ali MA, Al-Hemaid FMA (2014) An electrocatalytic oxidation and voltammetric method using a chemically reduced graphene oxide film for the determination of caffeic acid. J Colloid Interface Sci 423:33–40PubMedCrossRefPubMedCentralGoogle Scholar
  86. Wang Z, Dai Z (2015) Carbon nanomaterials-based electrochemical biosensors: an overview. Nanoscale 8:1–3Google Scholar
  87. Wang LY, Yan RX, Hao ZY, Wang L, Zeng JH, Bao J, Wang X, Peng Q, Li YD (2005) Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. Angew Chem Int Ed 44:6054–6057CrossRefGoogle Scholar
  88. Wang M, Abbineni G, Clevenger A, Mao CB, Xu SK (2011) Upconversion nanoparticles: synthesis, surface modification and biological applications. Nanomed Nanotechnol Biol Med 7:710–729CrossRefGoogle Scholar
  89. Wang X, Li H, Wu M, Ge SL, Zhu Y, Wang QJ, He PG, Fang YZ (2013) Simultaneous electrochemical determination of sulphite and nitrite by a gold nanoparticle/graphene-chitosan modified electrode. Chin J Anal Chem 41:1232–1237CrossRefGoogle Scholar
  90. Wang S, Wang S, Guo Z (2014a) Electrochemiluminescence sensor for selective preconcentration and sensitive detection of napropamide using water-soluble sulfonated graphene. Electroanalysis 26:849–855CrossRefGoogle Scholar
  91. Wang Z, Wang H, Zhang Z, Yang X, Liu G (2014b) Sensitive electrochemical determination of trace cadmium on a stannum film/poly(p-aminobenzene sulfonic acid)/electrochemically reduced graphene composite modified electrode. Electrochim Acta 120:140–146CrossRefGoogle Scholar
  92. Wang N, Lin M, Dai H, Ma H (2016a) Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine–mercury–thymine structure. Biosens Bioelectron 79:320–326PubMedCrossRefPubMedCentralGoogle Scholar
  93. Wang Z, Zhu W, Qiu Y, Yi X, Von dem BA, Kane A, Gao H, Koski K, Hurt R (2016b) Biological and environmental interactions of emerging two-dimensional nanomaterials. Chem Soc Rev 45:1750–1780PubMedPubMedCentralCrossRefGoogle Scholar
  94. Wei Y, Meng F, Li H, Wang L, Liu J, Huang X (2012) SnO2/reduced graphene oxide nanocomposite for the simultaneous electrochemical detection of cadmium (II), lead(II), copper(II), and mercury(II): an interesting favorable mutual interference. J Phys Chem C 116:1034–1041CrossRefGoogle Scholar
  95. Wei C, Huang Q, Hu S, Zhang H, Zhang W, Wang Z, Zhu M, Dai P, Huang L (2014) Simultaneous electrochemical determination of hydroquinone, catechol and resorcinol at Nafion/multi-walled carbon nanotubes/carbon dots/multi-walled carbon nanotubes modified glassy carbon electrode. Electrochim Acta 149:237–244CrossRefGoogle Scholar
  96. Wolfrum B, Katelhon E, Yakushenko A, Krause KJ, Adly N, Huske M, Rinklin P (2016) Nanoscale electrochemical sensor arrays: redox cycling amplification in dual-electrode systems. Acc Chem Res 49:2031–2040PubMedCrossRefPubMedCentralGoogle Scholar
  97. Wu L, Lei W, Han Z, Zhang Y, Xia M, Hao Q (2015) A novel non-enzyme amperometric platform based on poly(3-methylthiophene)/nitrogen doped graphene modified electrode for determination of trace amounts of pesticide phoxim. Sensor Actuat B Chem 206:495–501CrossRefGoogle Scholar
  98. Wu Q, Hou Y, Zhang M, Hou X, Xu L, Wang N, Wang J, Huang W (2016) Amperometric cholesterol biosensor based on zinc oxide films on a silver nanowire–graphene oxide modified electrode. Anal Methods 8:1806–1812CrossRefGoogle Scholar
  99. Xu T, Zhang L, Yang J, Li N, Yang L, Jiang X (2013) Development of electrochemical method for the determination of olaquindox using multi-walled carbon nanotubes modified glassy carbon electrode. Talanta 109:185–190PubMedCrossRefPubMedCentralGoogle Scholar
  100. Xu H, Xiao J, Liu B, Griveau S, Bedioui F (2015) Enhanced electrochemical sensing of thiols based on cobalt phthalocyanine immobilized on nitrogen-doped graphene. Biosens Bioelectron 66:438–444PubMedCrossRefPubMedCentralGoogle Scholar
  101. Yan J, Guan H, Yu J, Chi D (2013) Acetylcholinesterase biosensor based on assembly of multiwall carbon nanotubes onto liposome bioreactors for detection of organophosphates pesticides. Pestic Biochem Physiol 105:197–202CrossRefGoogle Scholar
  102. Yang C, Denno ME, Pyakurel P, Venton BJ (2015) Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: a review. Anal Chim Acta 887:17–37PubMedPubMedCentralCrossRefGoogle Scholar
  103. Yang J, Dou B, Yuan R, Xiang Y (2016) Proximity binding and metal ion-dependent DNAzyme cyclic amplification-integrated aptasensor for label-free and sensitive electrochemical detection of thrombin. Anal Chem 88:8218–8223PubMedCrossRefPubMedCentralGoogle Scholar
  104. Zeng Y, Zhu Z, Du D, Lin Y (2016) Nanomaterial-based electrochemical biosensors for food safety. J Electroanal Chem 781:147–154CrossRefGoogle Scholar
  105. Zhai H, Liang Z, Chen Z, Wang H, Liu Z, Su Z, Zhou Q (2015) Simultaneous detection of metronidazole and chloramphenicol by differential pulse stripping voltammetry using a silver nanoparticles/sulfonate functionalized graphene modified glassy carbon electrode. Electrochim Acta 171:105–113CrossRefGoogle Scholar
  106. Zhang Y, Wei Q (2016) The role of nanomaterials in electroanalytical biosensors: A mini review. J Electroanal Chem 781:401–409CrossRefGoogle Scholar
  107. Zhang JJ, Cheng FF, Li JJ, Zhu JJ, Lu Y (2016) Fluorescent nanoprobes for sensing and imaging of metal ions: recent advances and future perspectives. Nano Today 11:309–329PubMedPubMedCentralCrossRefGoogle Scholar
  108. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Germán A. Messina
    • 1
  • Matías Regiart
    • 1
  • Sirley V. Pereira
    • 1
  • Franco A. Bertolino
    • 1
  • Pedro R. Aranda
    • 1
  • Julio Raba
    • 1
  • Martín A. Fernández-Baldo
    • 1
    Email author
  1. 1.Instituto de Química de San Luis (INQUISAL) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional de San Luis (UNSL)San LuisArgentina

Personalised recommendations