Advertisement

New Technologies to Remove Halides from Water: An Overview

  • José Rivera-UtrillaEmail author
  • Manuel Sánchez-Polo
  • Ana M. S. Polo
  • Jesús J. López-Peñalver
  • María V. López-Ramón
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

The increasing demand for hydric resources inevitably requires the greater use of alternative sources for the supply of drinking water. Stricter drinking water quality guidelines can also be expected, such as those proposed by the World Health Organization (WHO). Consequently, there is a need to implement effective technologies for halide removal from water to avoid the formation of disinfection by-products (DBPs). There are innumerable individual DBP species that cannot plausibly be controlled and regulated, and the removal of DBP precursors offers the key advantage of minimizing the formation of all brominated and/or iodized DBPs, including known or unknown and regulated or nonregulated products, in a simple and effective manner. Bromide and iodine removal methods are classified into three categories: membrane, electrochemical, and adsorption techniques. Membrane techniques (reverse osmosis, nanofiltration, electrodialysis) have demonstrated excellent effectiveness to remove halides but are costly and energetically inefficient. Electrochemical techniques (electrolysis, capacitive deionization [CDI], and membrane CDI [MCDI]) have also shown good halide removal capacity but, unlike membrane techniques, they do not effectively remove natural organic matter (NOM), essential for the control of DBP formation. After further technological development, CDI and/or MCDI may prove suitable for application in drinking water treatments. Variable results have been obtained for bromide and/or iodine removal using adsorption techniques (hydrated oxides, activated carbons, carbon aerogels, ion-exchange resins, aluminum coagulation, and flocculation), which are limited by interference with halide adsorption from competitor anions and NOM. Nevertheless, the adsorption approach is a promising research area, given its relatively low cost and easy application. Water treatment companies continuously improve coagulation processes or add nonselective adsorbents to reduce the presence of DBP precursors and achieve disinfection with minimum DBP generation. The search for new approaches has been stimulated by more restrictive legislation on maximum DBP concentrations in water intended for human consumption. The development of nanotechnology has been responsible for novel approaches to water treatment and disinfection and other environmental problems based on the intrinsic characteristics of nanoparticles, including their large surface area, high reactivity, and surface plasmon resonance, among others.

Keywords

Halides removal Nanotechnologies Adsorption Membranes Electrochemical processes 

Notes

Acknowledgments

The authors are grateful for the financial support of the Ministry of Science and Innovation (CTQ2016-80978-C2-1-R).

References

  1. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7(1):17–28PubMedCrossRefPubMedCentralGoogle Scholar
  2. Andrade-Espinosa G, Escobar-Barrios V, Rangel-Mendez R (2010) Synthesis and characterization of silica xerogels obtained via fast sol–gel process. Colloid Polym Sci 288:1697–1704CrossRefGoogle Scholar
  3. Aoki T (1989) Continuous flow method for simultaneous determination of monochloramine, dichloramine, and free chlorine: application to a water purification plant. Environ Sci Technol 23(1):46–50CrossRefGoogle Scholar
  4. Balsley SD, Brady PV, Krumhansl JL, Anderson HL (1998) Anion scavengers for low-level radioactive waste repository backfills. J Soil Contam 7(2):125–141CrossRefGoogle Scholar
  5. Barbier O, Arreola ML, Del Razo LM (2010) Molecular mechanisms of toxicity. Chem Biol Interact 188(2):319–333PubMedCrossRefPubMedCentralGoogle Scholar
  6. Bazri MM, Martijn B, Kroesbergen J, Mohseni M (2016) Impact of anionic ion exchange resins on NOM fractions: Effect on N-DBPs and C-DBPs precursors. Chemosphere 144:1988–1995PubMedCrossRefPubMedCentralGoogle Scholar
  7. Bhatnagar A, Kumar E, Sillanpää M (2011) Fluoride removal from water by adsorption—A review. Chem Eng J 171(3):811–840CrossRefGoogle Scholar
  8. Bhatnagar A, Hogland W, Marques M, Sillanpää M (2013) An overview of the modification methods of activated carbon for its water treatment applications. Chem Eng J 219:499–511CrossRefGoogle Scholar
  9. Bian Y, Liang P, Yang X, Jiang Y, Zhang C, Huang X (2016) Using activated carbon fiber separators to enhance the desalination rate of membrane capacitive deionization. Desalination 381:95–99CrossRefGoogle Scholar
  10. Bichsel Y, Von Gunten U (2000) Formation of iodo-trihalomethanes during disinfection and oxidation of iodide-containing waters. Environ Sci Technol 34(13):2784–2791CrossRefGoogle Scholar
  11. Biswas K, Saha SK, Ghosh UC (2007) Adsorption of fluoride from aqueous solution by a synthetic iron (III)−aluminum (III) mixed oxide. J Ind Eng Chem 46(16):5346–5356CrossRefGoogle Scholar
  12. Bo L (2008) Electrolytic cell and process for removal of bromide ions and disinfection of source waters using silver cathode and/or dimensionally stable anode (DSA): a process for the reduction of disinfectant/disinfection byproducts in drinking water. US Patent US7384564B2Google Scholar
  13. Bórquez R, Ferrer J (2016) Seawater desalination by combined nanofiltration and ionic exchange. Desalin Water Treat 57(58):28122–28132CrossRefGoogle Scholar
  14. Bougeard CM, Goslan EH, Jefferson B, Parsons SA (2010) Comparison of the disinfection by-product formation potential of treated waters exposed to chlorine and monochloramine. Water Res 44(3):729–740PubMedCrossRefPubMedCentralGoogle Scholar
  15. Boyer TH, Singer PC (2006) A pilot-scale evaluation of magnetic ion exchange treatment for removal of natural organic material and inorganic anions. Water Res 40(15):2865–2876PubMedCrossRefPubMedCentralGoogle Scholar
  16. Cai J, Zhang Y, Pan B, Zhang W, Lv L, Zhang Q (2016) Efficient defluoridation of water using reusable nanocrystalline layered double hydroxides impregnated polystyrene anion exchanger. Water Res 102:109–116PubMedCrossRefPubMedCentralGoogle Scholar
  17. Chai L, Wang Y, Zhao N, Yang W, You X (2013) Sulfate-doped Fe3O4/Al2O3 nanoparticles as a novel adsorbent for fluoride removal from drinking water. Water Res 47:4040–4049PubMedCrossRefPubMedCentralGoogle Scholar
  18. Chen L, Wu HX, Wang TJ, Jin Y, Zhang Y, Dou XM (2009) Granulation of Fe–Al–Ce nano-adsorbent for fluoride removal from drinking water by spray coating on sand in a fluidized bed. Powder Technol 193:59–64CrossRefGoogle Scholar
  19. Chen G-j, Peng C-y, Fang J-y, Dong Y-y, Zhu X-h, Cai H-m (2016) Biosorption of fluoride from drinking water using spent mushroom compost biochar coated with aluminum hydroxide. Desalin Water Treat 57(26):12385–12395CrossRefGoogle Scholar
  20. Chen C, Apul OG, Karanfil T (2017) Removal of bromide from surface waters using silver impregnated activated carbon. Water Res 113:223–230PubMedCrossRefPubMedCentralGoogle Scholar
  21. Choi AL, Zhang Y, Sun G, Bellinger DC, Wang K, Yang XJ, Li JS, Zheng Q, Fu Y, Grandjean P (2015) Association of lifetime exposure to fluoride and cognitive functions in Chinese children: A pilot study. Neurotoxicol Teratol 47:96–101PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chon K, Cho J (2016) Fouling behavior of dissolved organic matter in nanofiltration membranes from a pilot-scale drinking water treatment plant: an autopsy study. Chem Eng J 295:268–277CrossRefGoogle Scholar
  23. Chubar NI (2011) New inorganic (an) ion exchangers based on Mg–Al hydrous oxides: (alkoxide-free) sol–gel synthesis and characterisation. J Colloid Interface Sci 357(1):198–209PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chubar NI, Samanidou VF, Kouts VS, Gallios GG, Kanibolotsky VA, Strelko VV, Zhuravlev IZ (2005) Adsorption of fluoride, chloride, bromide, and bromate ions on a novel ion exchanger. J Colloid Interface Sci 291(1):67–74PubMedCrossRefPubMedCentralGoogle Scholar
  25. Craig L, Stillings LL, Decker DL (2017) Assessing changes in the physico-chemical properties and fluoride adsorption capacity of activated alumina under varied conditions. Appl Geochem 76:112–123CrossRefGoogle Scholar
  26. Daifullah A, Yakout S, Elreefy S (2007) Adsorption of fluoride in aqueous solutions using KMnO4-modified activated carbon derived from steam pyrolysis of rice straw. J Hazard Mater 147(1):633–643PubMedCrossRefPubMedCentralGoogle Scholar
  27. Darwish N, Hilal N, Al-Zoubi H, Mohammad AW (2007) Neural networks simulation of the filtration of sodium chloride and magnesium chloride solutions using nanofiltration membranes. Chem Eng Res Des 85(4):417–430CrossRefGoogle Scholar
  28. Demirkalp G, Alamut S, Arar Ö, Yüksel Ü, Yüksel M (2016) Removal of Fluoride from water by Al(III)-loaded and Al(OH)3-coated chelating resin. Des Water Treat 57(34):15910–15919CrossRefGoogle Scholar
  29. Diawara CK, Lô SM, Rumeau M, Pontie M, Sarr O (2003) A phenomenological mass transfer approach in nanofiltration of halide ions for a selective defluorination of brackish drinking water. J Membr Sci 219(1):103–112CrossRefGoogle Scholar
  30. Ding L, Deng H, Wu C, Han X (2012) Affecting factors, equilibrium, kinetics and thermodynamics of bromide removal from aqueous solutions by MIEX resin. Chem Eng J 181–182:360–370CrossRefGoogle Scholar
  31. Dissanayake C (1991) The fluoride problem in the ground water of Sri Lanka—environmental management and health. Int J Environ Stud 38(2–3):137–155CrossRefGoogle Scholar
  32. Doederer K, Gernjak W, Weinberg HS, Farré MJ (2014) Factors affecting the formation of disinfection by-products during chlorination and chloramination of secondary effluent for the production of high quality recycled water. Water Res 48:218–228PubMedCrossRefPubMedCentralGoogle Scholar
  33. Dolar D, Košutić K, Vučić B (2011) RO/NF treatment of wastewater from fertilizer factory—removal of fluoride and phosphate. Desalination 265(1):237–241CrossRefGoogle Scholar
  34. Dong Y, Liu J, Sui M, Qu Y, Ambuchi JJ, Wang H, Feng Y (2017) A combined microbial desalination cell and electrodialysis system for copper-containing wastewater treatment and high-salinity-water desalination. J Hazard Mater 321:307–315CrossRefGoogle Scholar
  35. Durán N, Durán M, de Jesus MB, Seabra AB, Fávaro WJ, Nakazato G (2016) A new view on mechanistic aspects on antimicrobial activity. Nanomedicine 12(3):789–799PubMedCrossRefPubMedCentralGoogle Scholar
  36. Duranceau S (2010) Determination of the total iodide content in desalinated seawater permeate. Desalination 261(3):251–254CrossRefGoogle Scholar
  37. Duscher S (2014) Ceramic membranes for the filtration of liquids: An actual overview. F&S International Edition No. 14(1):13–21Google Scholar
  38. Dykstra J, Zhao R, Biesheuvel P, Van der Wal A (2016) Resistance identification and rational process design in capacitive deionization. Water Res 88:358–370PubMedCrossRefPubMedCentralGoogle Scholar
  39. Echigo S, Itoh S, Kuwahara M (2007) Bromide removal by hydrotalcite-like compounds in a continuous system. Water Sci Technol 56(11):117–122PubMedCrossRefPubMedCentralGoogle Scholar
  40. Edmunds WM, Smedley PL (2013) Fluoride in natural waters. In: Selinus O (ed) Essentials of medical geology. Springer, Netherlands, pp 311–336CrossRefGoogle Scholar
  41. Ezzeddine A, Meftah N, Hannachi A (2015) Removal of fluoride from an industrial wastewater by a hybrid process combining precipitation and reverse osmosis. Desalin Water Treat 55(10):2618–2625CrossRefGoogle Scholar
  42. Fane A, Tang C, Wang R (2011) Membrane technology for water: microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. In: Wilderer PA (ed) Treatise on water science, vol 4. Elsevier, Amsterdam, pp 301–335CrossRefGoogle Scholar
  43. Fang J, Yang X, Ma J, Shang C, Zhao Q (2010) Characterization of algal organic matter and formation of DBPs from chlor(am)ination. Water Res 44(20):5897–5906PubMedCrossRefPubMedCentralGoogle Scholar
  44. Farooqi A, Masuda H, Firdous N (2007) Toxic fluoride and arsenic contaminated groundwater in the Lahore and Kasur districts, Punjab, Pakistan and possible contaminant sources. Environ Pollut 145(3):839–849PubMedCrossRefPubMedCentralGoogle Scholar
  45. Frimmel FH, Niessner R (eds) (2014) Nanoparticles in the water cycle properties, analysis and environmental relevance. Springer, BerlinGoogle Scholar
  46. Gabarrón S, Gernjak W, Valero F, Barceló A, Petrovic M, Rodríguez-Roda I (2016) Evaluation of emerging contaminants in a drinking water treatment plant using electrodialysis reversal technology. J Hazard Mater 309:192–201PubMedCrossRefPubMedCentralGoogle Scholar
  47. García-Vaquero N, Lee E, Castañeda RJ, Cho J, López-Ramírez J (2014) Comparison of drinking water pollutant removal using a nanofiltration pilot plant powered by renewable energy and a conventional treatment facility. Desalination 347:94–102CrossRefGoogle Scholar
  48. Ge F, Zhu L (2008) Effects of coexisting anions on removal of bromide in drinking water by coagulation. J Hazard Mater 151(2–3):676–681PubMedCrossRefPubMedCentralGoogle Scholar
  49. Ge F, Shu H, Dai Y (2007) Removal of bromide by aluminium chloride coagulant in the presence of humic acid. J Hazard Mater 147(1):457–462PubMedCrossRefPubMedCentralGoogle Scholar
  50. Geng B, Jin Z, Li T, Qi X (2009) Preparation of chitosan-stabilized Fe(0) nanoparticles for removal of hexavalent chromium in water. Sci Total Environ 407(18):4994–5000PubMedCrossRefPubMedCentralGoogle Scholar
  51. Gibert O, Pages N, Bernat X, Cortina JL (2017) Removal of dissolved organic carbon and bromide by a hybrid MIEX-ultrafiltration system: insight into the behaviour of organic fractions. Chem Eng J 312:59–67CrossRefGoogle Scholar
  52. Goh KH, Lim TT, Dong Z (2008) Application of layered double hydroxides for removal of oxyanions: a review. Water Res 42(6–7):1343–1368PubMedCrossRefPubMedCentralGoogle Scholar
  53. Gong C, Zhang Z, Qian Q, Liu D, Cheng Y, Yuan G (2013a) Removal of bromide from water by adsorption on silver-loaded porous carbon spheres to prevent bromate formation. Chem Eng J 218:333–340CrossRefGoogle Scholar
  54. Gong M, Li Y, Wang H, Liang Y, Wu JZ, Zhou J, Wang J, Regier T, Wei F, Dai H (2013b) An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J Am Chem Soc 135(23):8452–8455PubMedCrossRefPubMedCentralGoogle Scholar
  55. Greenlee LF, Lawler DF, Freeman BD, Marrot B, Moulin P (2009) Reverse osmosis desalination: water sources, technology, and today’s challenges. Water Res 43(9):2317–2348PubMedPubMedCentralCrossRefGoogle Scholar
  56. Güler E, van Baak W, Saakes M, Nijmeijer K (2014) Monovalent-ion-selective membranes for reverse electrodialysis. J Membr Sci 455:254–270CrossRefGoogle Scholar
  57. Gupta SM, Tripathi M (2011) A review of TiO2 nanoparticles. Chin Sci Bull 56(16):1639–1657CrossRefGoogle Scholar
  58. Han H, Wei W, Jiang Z, Lu J, Zhu J, Xie J (2016) Removal of cationic dyes from aqueous solution by adsorption onto hydrophobic/hydrophilic silica aerogel. Colloid Surfaces A Physicochem Eng Aspects 509:539–549CrossRefGoogle Scholar
  59. He D, Garg S, Waite TD (2012) H2O2-mediated oxidation of zero-valent silver and resultant interactions among silver nanoparticles, silver ions, and reactive oxygen species. Langmuir 28:10266–10275PubMedCrossRefPubMedCentralGoogle Scholar
  60. Hernández-Campos M, Polo AMS, Sánchez-Polo M, Rivera-Utrilla J, Berber-Mendoza MS, Andrade-Espinosa G, López-Ramón MV (2018) Lanthanum-doped silica xerogels for the removal of fluorides from waters. J Environ Manage 213:549–554PubMedCrossRefPubMedCentralGoogle Scholar
  61. Ho PC, Kraus KA (1981) Adsorption on inorganic materials—VIII: adsorption of iodide on AgCl-filled carbon. J Inorg Nucl Chem 43(3):583–587CrossRefGoogle Scholar
  62. Hsu S, Singer PC (2010) Removal of bromide and natural organic matter by anion exchange. Water Res 44(7):2133–2140PubMedCrossRefPubMedCentralGoogle Scholar
  63. Hua M, Zhang S, Pan B, Zhang W, Lv L, Zhang Q (2012) Heavy metal removal from water/wastewater by nanosized metal oxides: a review. J Hazard Mater 211:317–331PubMedCrossRefPubMedCentralGoogle Scholar
  64. Huang H, Wu Q-Y, Tang X, Jiang R, Hu H-Y (2013) Formation of haloacetonitriles and haloacetamides during chlorination of pure culture bacteria. Chemosphere 92(4):375–381PubMedCrossRefPubMedCentralGoogle Scholar
  65. Huang H, Wu Q-Y, Tang X, Jiang R, Hu H-Y (2016a) Formation of haloacetonitriles and haloacetamides and their precursors during chlorination of secondary effluents. Chemosphere 144:297–303PubMedCrossRefPubMedCentralGoogle Scholar
  66. Huang Z, Lu L, Cai Z, Ren ZJ (2016b) Individual and competitive removal of heavy metals using capacitive deionization. J Hazard Mater 302:323–331PubMedCrossRefPubMedCentralGoogle Scholar
  67. Huang H, Chen B-Y, Zhu Z-R (2017) Formation and speciation of haloacetamides and haloacetonitriles for chlorination, chloramination, and chlorination followed by chloramination. Chemosphere 166:126–134PubMedCrossRefPubMedCentralGoogle Scholar
  68. IJpelaar G, Harmsen D, Heringa M (2007) UV disinfection and UV/H2O2 oxidation: by-product formation and control. Techneau, Deliverable number D2.4.1.1Google Scholar
  69. Jamode A, Sapkal V, Jamode V (2013) Defluoridation of water using inexpensive adsorbents. J Indian I Sci 84(5):163–171Google Scholar
  70. Karanfil T, Moro E, Serkiz S (2005) Development and testing of a silver chloride-impregnated activated carbon for aqueous removal and sequestration of iodide. Environ Technol 26(11):1255–1262PubMedCrossRefPubMedCentralGoogle Scholar
  71. Karmakar S, Dechnik J, Janiak C, De S (2016) Aluminium fumarate metal-organic framework: a super adsorbent for fluoride from water. J Hazard Mater 303:10–20PubMedCrossRefPubMedCentralGoogle Scholar
  72. Karpinska AM, Boaventura RA, Vilar VJ, Bilyk A, Molczan M (2013) Applicability of MIEX® DOC process for organics removal from NOM laden water. Environ Sci Pollut Res 20(6):3890–3899CrossRefGoogle Scholar
  73. Kaufhold S, Pohlmann-Lortz M, Dohrmann R, Nüesch R (2007) About the possible upgrade of bentonite with respect to iodide retention capacity. Appl Clay Sci 35(1):39–46CrossRefGoogle Scholar
  74. Kaushal A, Singh S (2017) Removal of heavy metals by nanoadsorbents: a review. J Environ Biotechnol Res 6(1):96–104Google Scholar
  75. Kentjono L, Liu J, Chang W, Irawan C (2010) Removal of boron and iodine from optoelectronic wastewater using Mg–Al (NO3) layered double hydroxide. Desalination 262(1):280–283CrossRefGoogle Scholar
  76. Khan NA, Hasan Z, Jhung SH (2013) Adsorptive removal of hazardous materials using metal-organic frameworks (MOFs): a review. J Hazard Mater 244:444–456PubMedCrossRefPubMedCentralGoogle Scholar
  77. Kimbrough DE, Suffet I (2002) Electrochemical removal of bromide and reduction of THM formation potential in drinking water. Water Res 36(19):4902–4906PubMedCrossRefPubMedCentralGoogle Scholar
  78. Kinani A, Kinani S, Richard B, Lorthioy M, Bouchonnet S (2016) Formation and determination of organohalogen by-products in water—Part I. Discussing the parameters influencing the formation of organohalogen by-products and the relevance of estimating their concentration using the AOX (adsorbable organic halide) method. TrAC Trends Anal Chem 85:273–280CrossRefGoogle Scholar
  79. König K, Boffa V, Buchbjerg B, Farsi A, Christensen ML, Magnacca G, Yue Y (2014) One-step deposition of ultrafiltration SiC membranes on macroporous SiC supports. J Membr Sci 472:232–240CrossRefGoogle Scholar
  80. Ku Y, Chiou H-M, Wang W (2002) The removal of fluoride ion from aqueous solution by a cation synthetic resin. Sep Sci Techn 37(1):89–103CrossRefGoogle Scholar
  81. Kumar K, Margerum DW (1987) Kinetics and mechanism of general-acid-assisted oxidation of bromide by hypochlorite and hypochlorous acid. Inorg Chem 26(16):2706–2711CrossRefGoogle Scholar
  82. Kumar GK, Kamath MS, Mallapur PS (2016) Defluoridation of water by using low cost activated carbon prepared from lemon peels. J Basic Appl Eng Res 3:658–660Google Scholar
  83. Kurokawa Y, Maekawa A, Takahashi M, Hayashi Y (1990) Toxicity and carcinogenicity of potassium bromate—a new renal carcinogen. Environ Health Persp 87:309–335Google Scholar
  84. Kut KMK, Sarswat A, Srivastava A, Pittman CU, Mohan D (2016) A review of fluoride in African groundwater and local remediation methods. Groundw Sustain Dev 2:190–212CrossRefGoogle Scholar
  85. Laurell P, Sivonen K, Poutanen H, Vuoriletho V, Hesampour M, Kettunen V, Tuutijärvi T, Vahala R (2015) Applicability of loose nanofiltration membranes for the removal of natural organic matter from soft surface water. Proceedings of the 5th IWA Specialist Conference on Natural Organic Matter in Water, Malmö, SwedenGoogle Scholar
  86. Lee KP, Arnot TC, Mattia D (2011) A review of reverse osmosis membrane materials for desalination—development to date and future potential. J Membr Sci 370(1–2):1–22CrossRefGoogle Scholar
  87. Leyva-Ramos R, Medellin-Castillo NA, Jacobo-Azuara A, Mendoza-Barron J, Landin-Rodriguez LE, Martinez-Rosales JM, Aragón-Piña A (2008) Fluoride removal from water solution by adsorption on activated alumina prepared from pseudo-boehmite. J Environ Eng Manage 18(5):301–309Google Scholar
  88. Leyva-Ramos R, Rivera-Utrilla J, Medellin-Castillo NA, Sanchez-Polo M (2010) Kinetic modeling of fluoride adsorption from aqueous solution onto bone char. Chem Eng J 158:458–467CrossRefGoogle Scholar
  89. Lhassani A, Rumeau M, Benjelloun D, Pontie M (2001) Selective demineralization of water by nanofiltration application to the defluorination of brackish water. Water Res 35(13):3260–3264PubMedCrossRefPubMedCentralGoogle Scholar
  90. Li Q, Mahendra S, Lyon DY, Brunet L, Liga MV, Li D, Alvarez PJJ (2008) Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res 42(18):4591–4602PubMedCrossRefPubMedCentralGoogle Scholar
  91. Li W, Cao C-Y, Wu L-Y, Ge M-F, Song W-G (2011) Superb fluoride and arsenic removal performance of highly ordered mesoporous aluminas. J Hazard Mater 98:143–150CrossRefGoogle Scholar
  92. Li R, Gao B, Ma D, Rong H, Sun S, Wang F, Yue Q, Wang Y (2015) Effects of chlorination operating conditions on trihalomethane formation potential in polyaluminum chloride-polymer coagulated effluent. J Hazard Mater 285:103–108PubMedCrossRefPubMedCentralGoogle Scholar
  93. Liang L, Li L (2007) Adsorption behavior of calcined layered double hydroxides towards removal of iodide contaminants. J Radioanal Nucl Chem 273(1):221–226CrossRefGoogle Scholar
  94. Lin K-YA, Liu YT, Chen SY (2016) Adsorption of fluoride to UiO-66-NH2 in water: stability, kinetic, isotherm and thermodynamic studies. J Colloid Interface Sci 461:79–87PubMedCrossRefPubMedCentralGoogle Scholar
  95. Liu J, Zhang X, Li Y (2015) Effect of boiling on halogenated DBPs and their developmental toxicity in real tap waters. In: Recent advances in disinfection by-products. Chapter 3, ACS Symposium Series 1190:45–60Google Scholar
  96. Liu D, Wang X, Xie YF, Tang HL (2016) Effect of capacitive deionization on disinfection by-product precursors. Sci Total Environ 568:19–25PubMedCrossRefPubMedCentralGoogle Scholar
  97. Llenas L, Martínez-Lladó X, Yaroshchuk A, Rovira M, de Pablo J (2011) Nanofiltration as pretreatment for scale prevention in seawater reverse osmosis desalination. Desalin Water Treat 36(1–3):310–318CrossRefGoogle Scholar
  98. López-Roldán R, Rubalcaba A, Martin-Alonso J, González S, Martí V, Cortina JL (2016) Assessment of the water chemical quality improvement based on human health risk indexes: application to a drinking water treatment plant incorporating membrane technologies. Sci Total Environ 40:334–343CrossRefGoogle Scholar
  99. Lv L, He J, Wei M, Evans D, Duan X (2006) Factors influencing the removal of fluoride from aqueous solution by calcined Mg–Al–CO3 layered double hydroxides. J Hazard Mater 133(1):119–128PubMedCrossRefPubMedCentralGoogle Scholar
  100. Lv L, Wang Y, Wei M, Cheng J (2008) Bromide ion removal from contaminated water by calcined and uncalcined MgAl-CO3 layered double hydroxides. J Hazard Mater 152(3):1130–1137PubMedCrossRefPubMedCentralGoogle Scholar
  101. Lyon BA, Dotson AD, Linden KG, Weinberg HS (2012) The effect of inorganic precursors on disinfection byproduct formation during UV-chlorine/chloramine drinking water treatment. Water Res 46(15):4653–4664PubMedCrossRefPubMedCentralGoogle Scholar
  102. Ma S, Gan Y, Chen B, Tang Z, Krasner S (2017) Understanding and exploring the potentials of household water treatment methods for volatile disinfection by-products control: kinetics, mechanisms, and influencing factors. J Hazard Mater 321:509–516PubMedCrossRefPubMedCentralGoogle Scholar
  103. Magara Y, Aizawa T, Kunikane S, Itoh M, Kohki M, Kawasaki M, Takeuti H (1996) The behavior of inorganic constituents and disinfection by products in reverse osmosis water desalination process. Water Sci Technol 34(9):141–148CrossRefGoogle Scholar
  104. Maher A, Sadeghi M, Moheb A (2014) Heavy metal elimination from drinking water using nanofiltration membrane technology and process optimization using response surface methodology. Desalination 352:166–173CrossRefGoogle Scholar
  105. Medellin-Castillo NA, Leyva-Ramos R, Padilla-Ortega E, Ocampo-Perez R (2014) Adsorption capacity of bone char for removing fluoride from water solution. Role of hydroxyapatite content, adsorption mechanism and competing anions. J Ind Eng Chem 20:4014–4021CrossRefGoogle Scholar
  106. Medellin-Castillo NA, Padilla-Ortega E, Tovar-García LD, Leyva-Ramos R, Ocampo-Pérez R, Carrasco-Marín F, Berber-Mendoza MS (2016) Removal of fluoride from aqueous solution using acid and thermally treated bone char. Adsorption 22:951–961CrossRefGoogle Scholar
  107. Meenakshi S, Viswanathan N (2007) Identification of selective ion-exchange resin for fluoride sorption. J Colloid Interface Sci 308(2):438–450PubMedCrossRefPubMedCentralGoogle Scholar
  108. Mohammadi A, Moghaddas J (2015) Synthesis, adsorption and regeneration of nanoporous silica aerogel and silica aerogel-activated carbon composites. Chem Eng Res Des 94:475–484CrossRefGoogle Scholar
  109. Mohapatra M, Anand S, Mishra BK, Giles DE, Singh P (2009) Review of fluoride removal from drinking water. J Environ Manag 91(1):67–77CrossRefGoogle Scholar
  110. von Moos N, Slaveykova VI (2014) Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae–state of the art and knowledge gaps. Nanotoxicology 8(6):605–630CrossRefGoogle Scholar
  111. Muellner MG, Wagner ED, McCalla K, Richardson SD, Woo Y-T, Plewa MJ (2007) Haloacetonitriles vs. regulated haloacetic acids: are nitrogen-containing DBPs more toxic? Environ Sci Technol 41(2):645–651PubMedCrossRefPubMedCentralGoogle Scholar
  112. Nagy JC, Kumar K, Margerum DW (1988) Nonmetal redox kinetics: oxidation of iodide by hypochlorous acid and by nitrogen trichloride measured by the pulsed-accelerated-flow method. Inorg Chem 27(16):2773–2780CrossRefGoogle Scholar
  113. Navarro M, Seaton N, Mastral A, Murillo R (2006) Analysis of the evolution of the pore size distribution and the pore network connectivity of a porous carbon during activation. Carbon 44(11):2281–2288CrossRefGoogle Scholar
  114. Obolensky A, Singer PC (2005) Halogen substitution patterns among disinfection byproducts in the information collection rule database. Environ Sci Technol 39(8):2719–2730PubMedCrossRefPubMedCentralGoogle Scholar
  115. Oladoja NA, Hu S, Drewes JE, Helmreich B (2016) Insight into the defluoridation efficiency of nano magnesium oxide in groundwater system contaminated with hexavalent chromium and fluoride. Sep Purif Technol 162:195–202CrossRefGoogle Scholar
  116. Onyango MS, Kojima Y, Aoyi O, Bernardo EC, Matsuda H (2004) Adsorption equilibrium modeling and solution chemistry dependence of fluoride removal from water by trivalent-cation-exchanged zeolite F-9. J Colloid Interface Sci 279(2):341–350PubMedCrossRefPubMedCentralGoogle Scholar
  117. Pan Y, Zhang X (2013) Four groups of new aromatic halogenated disinfection byproducts: effect of bromide concentration on their formation and speciation in chlorinated drinking water. Environ Sci Technol 47(3):1265–1273PubMedCrossRefPubMedCentralGoogle Scholar
  118. Pan Y, Li W, An H, Cui H, Wang Y (2016) Formation and occurrence of new polar iodinated disinfection byproducts in drinking water. Chemosphere 144:2312–2320PubMedCrossRefPubMedCentralGoogle Scholar
  119. Phetrak A, Lohwacharin J, Sakai H, Murakami M, Oguma K, Takizawa S (2014) Simultaneous removal of dissolved organic matter and bromide from drinking water source by anion exchange resins for controlling disinfection by-products. J Environ Sci 26(6):1294–1300CrossRefGoogle Scholar
  120. Pless JD, Chwirka JB, Krumhansl JL (2007) Iodine sequestration using delafossites and layered hydroxides. Environ Chem Lett 5(2):85–89CrossRefGoogle Scholar
  121. Plewa MJ, Kargalioglu Y, Vankerk D, Minear RA, Wagner ED (2002) Mammalian cell cytotoxicity and genotoxicity analysis of drinking water disinfection by-products. Environ Mol Mutagen 40(2):134–142PubMedCrossRefPubMedCentralGoogle Scholar
  122. Polo AMS, Velo-Gala I, Sánchez-Polo M, von Gunten U, López-Peñalver JJ, Rivera-Utrilla J (2016) Halide removal from aqueous solution by novel silver-polymeric materials. Sci Total Environ 573:1125–1131CrossRefGoogle Scholar
  123. Polo AMS, López-Peñalver JJ, Rivera-Utrilla J, Von Gunten U, Sánchez-Polo M (2017) Halide removal from waters by silver nanoparticles and hydrogen peroxide. Sci Total Environ 607–608:649–657PubMedCrossRefPubMedCentralGoogle Scholar
  124. Polo AMS, López-Peñalver JJ, Rivera-Utrilla J, Sánchez-Polo M, López-Ramón MV (2018) Halide removal from water using silver doped magnetic-microparticles (under review)Google Scholar
  125. Pontie M, Buisson H, Diawara CK, Essis-Tome H (2003) Studies of halide ions mass transfer in nanofiltration—application to selective defluorination of brackish drinking water. Desalination 157(1):127–134CrossRefGoogle Scholar
  126. Pontié M, Dach H, Leparc J, Hafsi M, Lhassani A (2008) Novel approach combining physico-chemical characterizations and mass transfer modelling of nanofiltration and low pressure reverse osmosis membranes for brackish water desalination intensification. Desalination 221(1–3):174–191CrossRefGoogle Scholar
  127. Popple EH, Zhou H, Xie Y, Hozalski RH (2000) Chemical species (Review Article). Water Environ Res 72(5):1–44Google Scholar
  128. Prabhu SM, Elanchezhiyan SS, Lee G, Meenakshi S (2016) Defluoridation of water by Tea-bag model using La3+ modified synthetic resin@chitosan biocomposite. Int J Biol Macromol 91:1002–1009PubMedCrossRefPubMedCentralGoogle Scholar
  129. Prathna TC, Sharmaa SK, Kennedy M (2018) Nanoparticles in household level water treatment: an overview. Sep Purif Technol 199:260–270CrossRefGoogle Scholar
  130. Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47(12):3931–3946CrossRefGoogle Scholar
  131. Reig M, Casas S, Aladjem C, Valderrama C, Gibert O, Valero F, Centeno CM, Larrotcha E, Cortina JL (2014) Concentration of NaCl from seawater reverse osmosis brines for the chlor-alkali industry by electrodialysis. Desalination 342:107–117CrossRefGoogle Scholar
  132. Ribera G, Llenas L, Rovira M, de Pablo J, Martinez-Llado X (2013) Pilot plant comparison study of two commercial nanofiltration membranes in a drinking water treatment plant. Desalin Water Treat 51(1–3):448–457CrossRefGoogle Scholar
  133. Richards LA, Vuachère M, Schäfer AI (2010) Impact of pH on the removal of fluoride, nitrate and boron by nanofiltration/reverse osmosis. Desalination 261(3):331–337CrossRefGoogle Scholar
  134. Sajil Kumar PJ, Jegathambal P, Nair S, James EJ (2015) Temperature and pH dependent geochemical modeling of fluoride mobilization in the groundwater of a crystalline aquifer in southern India. J Geochem Explor 156:1–9CrossRefGoogle Scholar
  135. Sánchez-Polo M, Rivera-Utrilla J, Salhi E, Von Gunten U (2006) Removal of bromide and iodide anions from drinking water by silver-activated carbon aerogels. J Colloid Interface Sci 300(1):437–441PubMedCrossRefPubMedCentralGoogle Scholar
  136. Sánchez-Polo M, Rivera-Utrilla J, Salhi E, Von Gunten U (2007) Ag-doped carbon aerogels for removing halide ions in water treatment. Water Res 41(5):1031–1037PubMedCrossRefPubMedCentralGoogle Scholar
  137. Sawade E, Fabris R, Humpage A, Drikas M (2016) Effect of increasing bromide concentration on toxicity in treated drinking water. J Water Health 14(2):183–191PubMedCrossRefPubMedCentralGoogle Scholar
  138. Sehn P (2008) Fluoride removal with extra low energy reverse osmosis membranes: three years of large scale field experience in Finland. Desalination 223(1–3):73–84CrossRefGoogle Scholar
  139. Shi Q, Huang Y, Jing C (2013) Synthesis, characterization and application of lanthanum-impregnated activated alumina for F removal. J Mater Chem A 1(41):12797–12803CrossRefGoogle Scholar
  140. Simeonidis K, Mourdikoudis S, Kaprara E, Mitrakas M, Polavarapu L (2016) Inorganic engineered nanoparticles in drinking water treatment: a critical review. Environ Sci Water Res Technol 2(1):43–70CrossRefGoogle Scholar
  141. Singer PC, Bilyk K (2002) Enhanced coagulation using a magnetic ion exchange resin. Water Res 36(16):4009–4022PubMedCrossRefPubMedCentralGoogle Scholar
  142. Stalter D, O’Malley E, Von Gunten U, Escher BI (2016) Point-of-use water filters can effectively remove disinfection by-products and toxicity from chlorinated and chloraminated tap water. Environ Sci Water Res Technol 2(5):875–883CrossRefGoogle Scholar
  143. Strathmann H (2010) Electrodialysis, a mature technology with a multitude of new applications. Desalination 264(3):268–288CrossRefGoogle Scholar
  144. Stumm W, Morgan JJ (2012) Aquatic chemistry: chemical equilibria and rates in natural waters. John Wiley & Sons, New YorkGoogle Scholar
  145. Sujana M, Soma G, Vasumathi N, Anand S (2009) Studies on fluoride adsorption capacities of amorphous Fe/Al mixed hydroxides from aqueous solutions. J Fluor Chem 130(8):749–754CrossRefGoogle Scholar
  146. Sun Z, Park J-S, Kim D, Shin C-H, Zhang W, Wang R, Rao P (2017) Synthesis and adsorption properties of Ca-Al layered double hydroxides for the removal of aqueous fluoride. Water Air Soil Pollut 228(1):23(1–7)Google Scholar
  147. Suss M, Porada S, Sun X, Biesheuvel P, Yoon J, Presser V (2015) Water desalination via capacitive deionization: what is it and what can we expect from it? Energy Environ Sci 8(8):2296–2319CrossRefGoogle Scholar
  148. Tan J, Allard S, Gruchlik Y, McDonald S, Joll C, Heitz A (2016) Impact of bromide on halogen incorporation into organic moieties in chlorinated drinking water treatment and distribution systems. Sci Total Environ 541:1572–1580PubMedCrossRefPubMedCentralGoogle Scholar
  149. Teutli-Sequeira A, Martínez-Miranda V, Solache-Ríos M, Linares-Hernández I (2013) Aluminum and lanthanum effects in natural materials on the adsorption of fluoride ions. J Fluor Chem 148:6–13CrossRefGoogle Scholar
  150. Theiss FL, Couperthwaite SJ, Ayoko GA, Frost RL (2014) A review of the removal of anions and oxyanions of the halogen elements from aqueous solution by layered double hydroxides. J Colloid Interface Sci 417:356–368PubMedCrossRefPubMedCentralGoogle Scholar
  151. Thomas N, Rajamathi M (2009) Intracrystalline oxidation of thiosulfate-intercalated layered double hydroxides. Langmuir 25(4):2212–2216PubMedCrossRefPubMedCentralGoogle Scholar
  152. Thunqvist E-L (2004) Regional increase of mean chloride concentration in water due to the application of deicing salt. Sci Total Environ 325(1):29–37PubMedCrossRefPubMedCentralGoogle Scholar
  153. Valero F, Arbós R (2010) Desalination of brackish river water using Electrodialysis Reversal (EDR): control of the THMs formation in the Barcelona (NE Spain) area. Desalination 253(1):170–174CrossRefGoogle Scholar
  154. Van der Hoek J, Rijnbende D, Lokin C, Bonne P, Loonen M, Hofman J (1998) Electrodialysis as an alternative for reverse osmosis in an integrated membrane system. Desalination 117(1–3):159–172CrossRefGoogle Scholar
  155. Velazquez-Jimenez LH, Hurt RH, Matos J, Rangel-Mendez JR (2014) Zirconium-carbon hybrid sorbent for removal of fluoride from water: oxalic acid mediated Zr(IV) assembly and adsorption mechanism. Environ Sci Technol 48(2):1166–1174PubMedCrossRefPubMedCentralGoogle Scholar
  156. Vences-Alvarez E, Velazquez-Jimenez LH, Chazaro-Ruiz LF, Diaz-Flores PE, Rangel-Mendez JR (2015) Fluoride removal in water by a hybrid adsorbent lanthanum–carbon. J Colloid Interface Sci 455:194–202PubMedCrossRefPubMedCentralGoogle Scholar
  157. Vergili I (2013) Application of nanofiltration for the removal of carbamazepine, diclofenac and ibuprofen from drinking water sources. J Environ Manag 127:177–187CrossRefGoogle Scholar
  158. Villanueva CM, Kogevinas M, Cordier S, Templeton MR, Vermeulen R, Nuckols JR, Nieuwenhuijsen MJ, Levallois P (2014) Assessing exposure and health consequences of chemicals in drinking water: current state of knowledge and research needs. Environ Health Persp 122(3):213–221CrossRefGoogle Scholar
  159. Vithanage M, Bhattacharya P (2015) Fluoride in the environment: sources, distribution and defluoridation. Environ Chem Lett 13(2):131–147CrossRefGoogle Scholar
  160. Von Gunten U (2003) Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res 37(7):1443–1467CrossRefGoogle Scholar
  161. Wang Q, O’Hare D (2012) Recent advances in the synthesis and application of layered double hydroxide (LDH) nanosheets. Chem Rev 112(7):4124–4155PubMedCrossRefPubMedCentralGoogle Scholar
  162. Wang G-L, Zhu X-Y, Dong Y-M, Jiao H-J, Wu X-M, Li Z-J (2013) The pH-dependent interaction of silver nanoparticles and hydrogen peroxide: a new platform for visual detection of iodide with ultra-sensitivity. Talanta 107:146–153PubMedCrossRefPubMedCentralGoogle Scholar
  163. Watson K, Farré MJ, Knight N (2012) Strategies for the removal of halides from drinking water sources, and their applicability in disinfection by-product minimisation: a critical review. J Environ Manag 110:276–298CrossRefGoogle Scholar
  164. Watson K, Farré MJ, Knight N (2015) Enhanced coagulation with powdered activated carbon or MIEX® secondary treatment: a comparison of disinfection by-product formation and precursor removal. Water Res 68:454–466PubMedCrossRefPubMedCentralGoogle Scholar
  165. Watson K, Farré MJ, Knight N (2016) Comparing a silver-impregnated activated carbon with an unmodified activated carbon for disinfection by-product minimisation and precursor removal. Sci Total Environ 542:672–684PubMedCrossRefPubMedCentralGoogle Scholar
  166. Wenhai C, Tengfei C, Erdeng D, Deng Y, Yingqing G, Naiyun G (2016) Increased formation of halomethanes during chlorination of chloramphenicol in drinking water by UV irradiation, persulfate oxidation, and combined UV/persulfate pre-treatments. Ecotoxicol Environ Saf 124:147–154PubMedCrossRefPubMedCentralGoogle Scholar
  167. Wintgens T, Melin T, Schäfer A, Khan S, Muston M, Bixio D, Thoeye C (2005) The role of membrane processes in municipal wastewater reclamation and reuse. Desalination 178(1–3):1–11CrossRefGoogle Scholar
  168. World Health Organization (2008) Guidelines for drinking-water quality [electronic resource]: incorporating 1st and 2nd addenda, vol. 1, recommendations, 3rd edn. WHO, GenevaGoogle Scholar
  169. Wu X, Tan X, Yang S, Wen T, Guo H, Wang X, Xu A (2013) Coexistence of adsorption and coagulation processes of both arsenate and NOM from contaminated groundwater by nanocrystallined Mg/Al layered double hydroxides. Water Res 47(12):4159–4168PubMedCrossRefPubMedCentralGoogle Scholar
  170. Xiao F, Zhang X, Zhai H, Lo IM, Tipoe GL, Yang M, Pan Y, Chen G (2012) New halogenated disinfection byproducts in swimming pool water and their permeability across skin. Environ Sci Technol 46(13):7112–7119PubMedCrossRefPubMedCentralGoogle Scholar
  171. Xie Y (2016) Disinfection byproducts in drinking water: formation, analysis, and control. CRC Press, Boca Raton, FLGoogle Scholar
  172. Xie M, Lee J, Nghiem LD, Elimelech M (2015) Role of pressure in organic fouling in forward osmosis and reverse osmosis. J Membr Sci 493:748–754CrossRefGoogle Scholar
  173. Xu P, Zeng GM, Huang DL, Feng CL, Hu S, Zhao MH, Lai C, Wei Z, Huang C, Xie GX, Liu ZF (2012) Use of iron oxide nanomaterials in wastewater treatment: a review. Sci Total Environ 424:1–10PubMedCrossRefPubMedCentralGoogle Scholar
  174. Xu N, Liu Z, Dong Y, Hong T, Dang L, Li W (2016) Controllable synthesis of mesoporous alumina with large surface area for high and fast fluoride removal. Ceram Int 42(14):15253–15260CrossRefGoogle Scholar
  175. Xu L, Chen G, Peng C, Qiao H, Ke F, Hou R, Li D, Cai H, Wan X (2017) Adsorptive removal of fluoride from drinking water using porous starch loaded with common metal ions. Carbohydr Polym 160:82–89PubMedCrossRefPubMedCentralGoogle Scholar
  176. Yang M, Zhang X (2013) Comparative developmental toxicity of new aromatic halogenated DBPs in a chlorinated saline sewage effluent to the marine polychaete platynereis dumerilii. Environ Sci Technol 47(19):10868–10876PubMedCrossRefPubMedCentralGoogle Scholar
  177. Yang C, Gao L, Wang Y, Tian X, Komarneni S (2014) Fluoride removal by ordered and disordered mesoporous aluminas. Micropor Mesopor Mater 197:156–163CrossRefGoogle Scholar
  178. Ye T, Xu B, Wang Z, Zhang T-Y, Hu C-Y, Lin L, Xia S-J, Gao N-Y (2014) Comparison of iodinated trihalomethanes formation during aqueous chlor(am)ination of different iodinated X-ray contrast media compounds in the presence of natural organic matter. Water Res 66:390–398PubMedCrossRefPubMedCentralGoogle Scholar
  179. Zhang Y-X, Jia Y (2016) Preparation of porous alumina hollow spheres as an adsorbent for fluoride removal from water with low aluminum residual. Ceram Int 42(15):17472–17481CrossRefGoogle Scholar
  180. Zhang S, Niu Q, Gao H, Ma R, Lei R, Zhang C, Xia T, Li P, Xu C, Wang C (2016) Excessive apoptosis and defective autophagy contribute to developmental testicular toxicity induced by fluoride. Environ Pollut 212:97–104PubMedCrossRefPubMedCentralGoogle Scholar
  181. Zhao X, Wang J, Wu F, Wang T, Cai Y, Shi Y, Jiang G (2010) Removal of fluoride from aqueous media by Fe3O4@Al(OH)3 magnetic nanoparticles. J Hazard Mater 173(1):102–109PubMedCrossRefPubMedCentralGoogle Scholar
  182. Zhao M, Ou S, Wu C-D (2014) Porous metal–organic frameworks for heterogeneous biomimetic catalysis. Accounts Chem Res 47(4):1199–1207CrossRefGoogle Scholar
  183. Zhou Y, Gao B, Zimmerman AR, Chen H, Zhang M, Cao X (2014) Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresour Technol 152:538–542PubMedCrossRefPubMedCentralGoogle Scholar
  184. Zhou D, Zhu L, Fu Y, Zhu M, Xue L (2015) Development of lower cost seawater desalination processes using nanofiltration technologies—a review. Desalination 376:109–116CrossRefGoogle Scholar
  185. Zhu B, Myat DT, Shin J-W, Na Y-H, Moon I-S, Connor G, Maeda S, Morris G, Gray S, Duke M (2015) Application of robust MFI-type zeolite membrane for desalination of saline wastewater. J Membr Sci 475:167–174CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • José Rivera-Utrilla
    • 1
    Email author
  • Manuel Sánchez-Polo
    • 1
  • Ana M. S. Polo
    • 1
  • Jesús J. López-Peñalver
    • 1
  • María V. López-Ramón
    • 2
  1. 1.Faculty of Science, Department of Inorganic ChemistryUniversity of GranadaGranadaSpain
  2. 2.Faculty of Experimental Science, Department of Inorganic and Organic ChemistryUniversity of JaénJaénSpain

Personalised recommendations