Advertisement

Silver Nanoparticles as a Biocide for Water Treatment Applications

  • Renat R. Khaydarov
  • Rashid A. Khaydarov
  • Olga Gapurova
  • Ilnur Garipov
  • M. Lutfi Firdaus
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

The minimum inhibitory concentrations (MICs) assays conducted for Escherichia coli, S Staphylococcus aureus, Bacillus subtilis, and Penicillium phoeniceum cultures have shown that the antimicrobial activity of silver ions was superior to that of silver nanoparticles. The efficacy of nanosilver as an antimicrobial agent has been estimated against a range of microbes on the surface of fibrous ion-exchange sorbents. The cytotoxicity of silver nanoparticles has been studied using NIH-3T3, HEP-G2, A-549, PC-12, and Colo-320 cells via the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium-bromide) test. The obtained MTT test results have shown that silver nanoparticles with concentrations of ~1–10 ppm entering the body from air or liquid suspensions can present a potential risk to human health.

Keywords

Silver nanoparticle Cytotoxicity Water treatment Biocide 

References

  1. Aziz N, Fatma T, Varma A, Prasad R (2014) Biogenic synthesis of silver nanoparticles using Scenedesmus abundans and evaluation of their antibacterial activity. J Nanoparticles:689419.  https://doi.org/10.1155/2014/689419CrossRefGoogle Scholar
  2. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612.  https://doi.org/10.1021/acs.langmuir.5b03081CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984.  https://doi.org/10.3389/fmicb.2016.01984CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bhati M, Rai R (2017) Nanotechnology and water purification: Indian know-how and challenges. Environ Sci Pollut Res 24(30):23423–23435CrossRefGoogle Scholar
  5. Braydich-Stolle L, Hussain S, Schlager J, Hofmann M-C (2005) In vitro cytotoxicity of nanoparticles in mammalian germline stem cells. Toxicol Sci 88(2):412–419CrossRefGoogle Scholar
  6. Donaldson K, Brown D, Clouter A, Duffin R, MacNee W, Renwick L, Tran L, Stone V (2002) The pulmonary toxicology of ultrafine particles. J Aerosol Med 15(2):213–220CrossRefGoogle Scholar
  7. Donaldson K, Stone V, Clouter A, Renwick L, MacNee W (2001) Ultrafine particles. Occup Environ Med 58(3):211–215CrossRefGoogle Scholar
  8. Donaldson K, Stone V, Gilmour PS, Brown DM, MacNee W (2000) Ultrafine particles: mechanisms of lung injury. Phil Trans R Soc Lond A 358:2741–2749CrossRefGoogle Scholar
  9. Dos Santos CA, Seckler MM et al (2014) Silver nanoparticles: therapeutical uses, toxicity, and safety issues. J Pharm Sci 103(7):1931–1944CrossRefGoogle Scholar
  10. Droste RL (1997) Theory and practice of water and wastewater treatment. Wiley Interscience, New YorkGoogle Scholar
  11. Grodzik M, Sawosz E (2006) The influence of silver nanoparticles on chicken embryo development and bursa of Fabricius morphology. J Anim Feed Sci 15(1):111–114CrossRefGoogle Scholar
  12. Jain P, Pradeep T (2005) Potential of silver nanoparticle-coated polyurethane foam as an antibacterial water filter. Biotechnol Bioeng 90(1):59–63CrossRefGoogle Scholar
  13. Jani P, Halbert GW, Langridge J, Florence AT (1990) Nanoparticle uptake by the rat gastrointestinal mucosa: quantitation and particle size dependency. J Pharm Pharmacol 42:821–826CrossRefGoogle Scholar
  14. Joshi N, Jain N, Pathak A, Singh J, Prasad R, Upadhyaya CP (2018) Biosynthesis of silver nanoparticles using Carissa carandas berries and its potential antibacterial activities. J Sol-Gel Sci Technol.  https://doi.org/10.1007/s10971-018-4666-2CrossRefGoogle Scholar
  15. Khalandi B, Asadi N, Milani M, Davaran S, Abadi AJ, Abasi E, Akbarzadeh A (2017) A review on potential role of silver nanoparticles and possible mechanisms of their actions on bacteria. Drug Res (Stuttg) 67(02):70–76Google Scholar
  16. Khaydarov RA, Khaydarov RR (2006) Purification of drinking water from 134,137Cs, 89,90Sr, 60Co and 129I. In: Dishovsky C (ed) Medical treatment of intoxication and decontamination of chemical agents in the area of terrorist attack. Springer, Dordrecht, pp 171–181CrossRefGoogle Scholar
  17. Khaydarov RA, Khaydarov RR (2008) Environmental change in the aral sea region: new approaches to water treatment. In: Liotta PH, Mouat DA, Kepner WG, Lancaster JM (eds) Environmental change and human security: recognizing and acting on hazard impacts, NATO Science for Peace and Security Series C: Environmental Security. Springer, Dordrecht, pp 433–447CrossRefGoogle Scholar
  18. Khaydarov RA, Khaydarov RR, Evgrafova S, Estrin Y (2011) Using silver nanoparticles as an antimicrobial agent. In: Mikhalovsky S, Khajibaev A (eds) Biodefence. NATO science for peace and security series a: chemistry and biology. Springer, Dordrecht, pp 169–177Google Scholar
  19. Khaydarov RR, Khaydarov RA, Gapurova O, Estrin Y, Evgrafova S, Scheper T, Cho SY (2009) Antimicrobial effects of silver nanoparticles synthesized by an electrochemical method. In: Reithmaier JP, Petkov P, Kulisch W, Popov C (eds) Nanostructured materials for advanced technological applications, NATO science for peace and security series B: physics and biophysics. Springer, Dordrecht, pp 215–218CrossRefGoogle Scholar
  20. Lademann J, Weigmann H, Rickmeyer C, Barthelmes H, Schaefer H, Mueller G, Sterry W (1999) Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacol Appl Ski Physiol 12:247–256CrossRefGoogle Scholar
  21. Lee HJ, Jeong SH (2005) Bacteriostasis and skin innoxiousness of nanosize silver colloids on textile fabrics. Text Res J 75:551–556CrossRefGoogle Scholar
  22. Leonard P, Hearty S, Brennan J, Dunne L, Quinn J, Chakraborty T, O'Kennedy R (2003) Advances in biosensors for detection of pathogens in food and water. Enzym Microb Technol 32:3–13CrossRefGoogle Scholar
  23. Lewinski N, Colvin V, Drezek R (2008) Cyto of nanopart. Small 4(1):26–49CrossRefGoogle Scholar
  24. Lv Y, Liu H, Wang Z, Liu S, Hao L, Sang Y, Liu D, Wang J, Boughton RI (2009) Silver nanoparticle-decorated porous ceramic composite for water treatment. J Memb Sci 331(1):50–56.  https://doi.org/10.1016/j.memsci.2009.01.007CrossRefGoogle Scholar
  25. Marambio-Jones C, Hoek E (2010) A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J Nanopart Res 12:1531–1551CrossRefGoogle Scholar
  26. McGillicuddy E, Murray I, Kavanagh S et al (2017) Silver nanoparticles in the environment: sources, detection and ecotoxicology. Sci Total Environ 575:231–246CrossRefGoogle Scholar
  27. Miranda RR, Bezerra AGJR, Oliveira RCA et al (2017) Toxicological interactions of silver nanoparticles and non-essential metals in human hepatocarcinoma cell line. Toxicol In Vitro 5:134–143CrossRefGoogle Scholar
  28. Morones JR, Elechiguerra JL, Camacho A et al (2005) The bactericidal effect of silver nanoparticles. Nanotech 16:2346–2353CrossRefGoogle Scholar
  29. Oberdorster G, Oberdorster E, Oberdorster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839CrossRefGoogle Scholar
  30. Oyanedel-Craver VA, Smith JA (2008) Sustainable colloidal-silver-impregnated ceramic filter for point-of-use water treatment. Environ Sci Technol 42(3):927–933CrossRefGoogle Scholar
  31. Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946CrossRefGoogle Scholar
  32. Rosa LR, Rosa RD, Da Veiga MAMS (2016) Colloidal silver and silver nanoparticles bioaccessibility in drinking water filters. J Environ Chem Eng 4:3451–3458CrossRefGoogle Scholar
  33. Savage N, Diall MS (2005) Nanomaterials and water purification: opportunities and challenges. J Nanopart Res 7:331–342CrossRefGoogle Scholar
  34. Soete DD, Gijbels R, Hoste J (1972) Neutron activation analysis. Wiley Interscience, New YorkGoogle Scholar
  35. Solov’ev AY, Potekhina TS, Chernova IA et al (2007) Track membrane with immobilized colloid silver particles. Russ J Appl Chem 80(3):438–442CrossRefGoogle Scholar
  36. Soto KF, Carrasco A, Powell TG, Garza KM, Murr LE (2005) Comparative in vitro cytotoxicity assessment of some manufactured nanoparticulate materials characterized by transmission electron microscopy. J Nanopart Res 7:145–169CrossRefGoogle Scholar
  37. Theron J, Walker JA, Cloete TE (2008) Nanotechnology and water treatment: applications and emerging opportunities. Crit Rev Microbiol 34(1):43–69CrossRefGoogle Scholar
  38. World Health Organization (1996) Guidelines for drinking-water quality, vol 2. WHO, GenevaGoogle Scholar
  39. Yoon KO, Hoon JG, Yeon B, Park CW, Wang JH (2008) Antimicrobial effect of silver particles on bacterial contamination of activated carbon fibers. Environ Sci Technol 42:1251–1255CrossRefGoogle Scholar
  40. Zverev MP (2002) Fibre sorbents- material for environmental protection: a review. Fibre Chem 34(6):456–465CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Renat R. Khaydarov
    • 1
  • Rashid A. Khaydarov
    • 1
  • Olga Gapurova
    • 1
  • Ilnur Garipov
    • 1
  • M. Lutfi Firdaus
    • 2
  1. 1.Institute of Nuclear PhysicsUzbekistan Academy of SciencesTashkentUzbekistan
  2. 2.Graduate School of Science EducationUniversity of BengkuluBengkuluIndonesia

Personalised recommendations