Advertisement

Microalgae-Bacteria Consortia for the Removal of Phenolic Compounds from Industrial Wastewaters

  • Paula Maza-Márquez
  • Alejandro González-Martínez
  • Belén Juárez-Jiménez
  • Belén Rodelas
  • Jesús González-López
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Phenolic compounds (PCs) of either natural or anthropogenic origin are pollutants often occurring in industrial, agricultural, or domestic wastewaters, which are toxic for living organisms even when present at concentrations lower than 1 mg/L in aquatic media. Different physicochemical or biological strategies have been designed, tested, and applied for the removal of PCs from wastewaters; biological approaches are most often preferred for their efficiency at a lower cost. The ability to remove PCs of various types of microorganisms (bacteria, archaea, fungi, and microalgae), either isolated or in consortia, has been widely described in the literature. Photobioreactors (PBRs) are a reliable and efficient technology to treat complex wastewater effluents, based on the mutualistic relationships among microalgae and bacteria. Microalgae-bacteria consortia provide a variety of advantages for wastewater treatment, since photoautotrophic microorganisms deliver O2 to heterotrophic bacteria while fixing the CO2 generated by the mineralization of organic matter, thus reducing aeration cost and greenhouse gas emissions. Since microbial communities determine the success of the biological strategies for the removal of pollutants in PBRs, different biotic and abiotic factors influencing their diversity and functions are critical and must be considered. In this chapter, we focused on the current knowledge regarding the potential of microalgae-bacteria consortia for the effective treatment of PCs in wastewaters using PBR systems.

Keywords

Industrial wastewater Microalgae Microbial consortia Phenolic compounds Photobioreactors 

References

  1. Abdel-Raouf N, Al-Homaidan AA, Ibraheem IBM (2012) Microalgae and wastewater treatment. Saudi J Biol Sci 19(3):257–275CrossRefPubMedPubMedCentralGoogle Scholar
  2. Acikgoz E, Ozcan B (2016) Phenol biodegradation by halophilic archaea. Int Biodeterior Biodegradation 107:140–146CrossRefGoogle Scholar
  3. Acir IH, Guenther K (2018) Endocrine-disrupting metabolites of alkylphenol ethoxylates – a critical review of analytical methods, environmental occurrences, toxicity, and regulation. Sci Total Environ 635:1530–1546CrossRefPubMedGoogle Scholar
  4. Acuña-Argüelles ME, Olguin-Lora P, Razo-Flores E (2003) Toxicity and kinetic parameters of the aerobic biodegradation of the phenol and alkylphenols by a mixed culture. Biotechnol Lett 25(7):599CrossRefGoogle Scholar
  5. Afreen A, Bano F, Ahmad N, Fatma T (2017) Screening and optimization of laccase from cyanobacteria with its potential in decolorization of anthraquinonic dye Remazol Brilliant Blue R. Biocatal Agric Biotechnol 10:403–410CrossRefGoogle Scholar
  6. Aggelis G, Iconomou D, Christou M, Bokas D, Kotzailias S, Christou G, Tsagou V, Papanikolaou S (2003) Phenolic removal in a model olive oil mill wastewater using Pleurotus ostreatus in bioreactor cultures and biological evaluation of the process. Water Res 37(16):3987–3904CrossRefGoogle Scholar
  7. Ahn YB, Chae JC, Zylstra GJ, Häggblom MM (2009) Degradation of phenol via phenylphosphate and carboxylation to 4-hydroxybenzoate by a newly isolated strain of the sulfate-reducing bacterium Desulfobacterium anilini. Appl Environ Microbiol 75(13):4248–4253CrossRefPubMedPubMedCentralGoogle Scholar
  8. Alexander JT, Hai FI, Al-Aboud TM (2012) Chemical coagulation-based processes for trace organic contaminant removal: current state and future potential. J Environ Manag 111:195–207CrossRefGoogle Scholar
  9. Al-Fawwaz AT, Jacob JH, Al-Wahishe TE (2016) Bioremoval capacity of phenol by green micro- algal and fungal species isolated from dry environment. Int J Sci Technol Res 5(8):155–160Google Scholar
  10. Ali S, Lafuente RL, Cowan DA (1998) Meta-pathway degradation of phenolics by thermophilic Bacilli. Enzym Microb Technol 23(7–8):462–468CrossRefGoogle Scholar
  11. Al-Khalid T, El Naas MH (2012) Aerobic biodegradation of phenols: a comprehensive review. Crit Rev Environ Sci Technol 42:1631–1690CrossRefGoogle Scholar
  12. Anders HJ, Kaetzke A, Kämpfer P, Ludwig W, Fuchs G (1995) Taxonomic position of aromatic-degrading denitrifying Pseudomonas strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera aromatica sp. Nov., and Azoarcus, as Azoarcus evansii sp. nov., respectively, members of the beta subclass of the Proteobacteria. Int J Syst Bacteriol 45(2):327–333CrossRefPubMedGoogle Scholar
  13. Anku WW, Mamo MA, Govender PP (2017) Phenolic compounds in water: sources, reactivity, toxicity and treatment methods. In: Soto-Hernández M, Palma-Tenango M, García-Mateos MR (eds) Phenolic compounds-natural sources, importance and applications, chapter 17. InTech Open, Croatia, pp 420–443Google Scholar
  14. Aranda E (2016) Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota. Curr Opin Biotechnol 38:1–8CrossRefPubMedGoogle Scholar
  15. Araújo M, Pimentel FB, Alves RC, Oliveira MBPP (2015) Phenolic compounds from olive mill wastes: health effects, analytical approach and application as food antioxidants. Trends Food Sci Technol 45(2):200–211CrossRefGoogle Scholar
  16. Arora PK, Srivastava A, Singh VP (2014) Bacterial degradation of nitrophenols and their derivatives. J Hazard Mater 266:42–59CrossRefPubMedGoogle Scholar
  17. Arora PK, Srivastava A, Garg SK, Singh VP (2018) Recent advances in degradation of chloronitrophenols. Bioresour Technol 250:902–909CrossRefPubMedGoogle Scholar
  18. Arutchelvan V, Kanakasabai V, Elangovan R, Nagarajan S, Muralikrishnan V (2006) Kinetics of high strength phenol degradation using Bacillus brevis. J Hazard Mater B 129(1–3):216–222CrossRefGoogle Scholar
  19. Asha P, Nira KS, Ashok P, Edgard G, Datta M (2011) Cyanobacteria and microalgae: a positive prospect for biofuels. Bioresour Technol 102(22):10163–10172CrossRefGoogle Scholar
  20. Azubuike CC, Chikere CB, Okpokwasili GC (2016) Bioremediation techniques–classification based on site of application: principles, advantages, limitations and prospects. World J Microbiol Biotechnol 32(11):180CrossRefPubMedPubMedCentralGoogle Scholar
  21. Basha KM, Rajendran A, Thangavelu V (2010) Recent advances in the biodegradation of phenol: a review. Asian J Exp Biol Sci 1(2):219–234Google Scholar
  22. Bhattacharya A, Sood P, Citovsky V (2010) The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Mol Plant Pathol 11(5):705–719PubMedGoogle Scholar
  23. Bitog JP, Lee IB, Lee CG, Kim KS, Hwang HS, Hong SW, Seo IH, Kwon KS, Mostafa E (2011) Application of computational fluid dynamics for modeling and designing photobioreactors for microalgae production: a review. Comput Electron Agric 76(2):131–147CrossRefGoogle Scholar
  24. Borde X, Guieysse B, Delgado O, Muñoz R, Hatti-Kaul R, Nugier-Chauvin C, Patin H, Mattiasson B (2003) Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants. Bioresour Technol 86(3):293–300CrossRefPubMedGoogle Scholar
  25. Brodie J, Ball SG, Bouget FY, Chan CX, De Clerck O, Cock JM, Gachon C, Grossman AR, Mock T, Raven JA, Saha M, Smith AG, Vardi A, Yoon HS, Bhattacharya D (2017) Biotic interactions as drivers of algal origin and evolution. New Phytol 216(3):670–681CrossRefPubMedGoogle Scholar
  26. Busca G, Berardinelli S, Resini C, Arrighi L (2008) Technologies for the removal of phenol from fluid streams: a short review of recent developments. J Hazard Mater 160(2–3):174–183Google Scholar
  27. Cai W, Li J, Zhang Z (2007) The characteristics and mechanisms of phenol biodegradation by Fusarium sp. J Hazard Mater 148:38–42CrossRefPubMedGoogle Scholar
  28. Cai T, Park SY, Li Y (2013) Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew Sust Energ Rev 19:360–369CrossRefGoogle Scholar
  29. Calderón K, González-Martínez A, Gómez-Silván C, Osorio F, Rodelas B, González-López J (2013) Archaeal diversity in biofilm technologies applied to treat urban and industrial wastewater: recent advances and future prospects. Int J Mol Sci 14:18572–18598CrossRefPubMedPubMedCentralGoogle Scholar
  30. Cañizares P, Paz R, Sáez C, Rodrigo MA (2009) Costs of the electrochemical oxidation of wastewaters: a comparison with ozonation and Fenton oxidation processes. J Environ Manag 90(1):410–420CrossRefGoogle Scholar
  31. Cerrone F, Barghini P, Pesciaroli C, Fenice M (2011) Efficient removal of pollutants from olive washing wastewater in bubble-column bioreactor by Trametes versicolor. Chemosphere 84(2):254–259CrossRefPubMedGoogle Scholar
  32. Chang JS, Show PL, Ling TC, Chen CY, Ho SH, Tan CHD, Nagarajan D, Phong WN (2017) Photobioreactors. In: Larroche C, Sanroman MA, Du G, Pandey A (eds) Current developments in biotechnology and bioengineering: bioprocess, Bioreactors and Controls. Elsevier, Amsterdam, pp 313–352CrossRefGoogle Scholar
  33. Chauhan PS, Goradia B, Saxena A (2017) Bacterial laccase: recent update on production, properties and industrial applications. 3 Biotech 7(5):323CrossRefPubMedPubMedCentralGoogle Scholar
  34. Cheng T, Zhang W, Zhang W, Yuan G, Wang H, Liu T (2017) An oleaginous filamentous microalgae Tribonema minus exhibits high removing potential of industrial phenol contaminants. Bioresour Technol 238:749–754CrossRefPubMedGoogle Scholar
  35. Cho DH, Ramanan R, Heo J, Lee J, Kim BH, Oh HM, Kim HS (2015) Enhancing microalgal biomass productivity by engineering a microalgal-bacterial community. Bioresour Technol 175:578–585Google Scholar
  36. Christen P, Vega A, Casalot L, Simon G, Auria R (2012) Kinetics of aerobic phenol biodegradation by the acidophilic and hyper thermophilic archaeon Sulfolobus solfataricus 98/2. Biochem Eng J 62:56–61CrossRefGoogle Scholar
  37. Cordova-Villegas L, Mashhadi N, Chen M, Mukherjee D, Taylor KE, Biswas N (2016) A short review of techniques for phenol removal from wastewater. Curr Pollut Rep 2:157–167CrossRefGoogle Scholar
  38. Cuéllar-Bermúdez SP, Alemán-Nava GS, Chandra R, Garcia-Perez JS, Contreras-Angulo JR, Markou G, Muylaert K, Rittmann BE, Parra-Saldivar R (2017) Nutrients utilization and contaminants removal. A review of two approaches of algae and cyanobacteria in wastewater. Algal Res 24(Part B):438–449CrossRefGoogle Scholar
  39. Cui Y, Liu XY, Chung TS, Weber M, Staudt C, Maletzko C (2016) Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: evaluation of FO as an alternative method to reverse osmosis (RO). Water Res 91:104–114CrossRefPubMedPubMedCentralGoogle Scholar
  40. Das DP, Parida K, De BR (2005) Photo-oxidation of phenol over titania pillared zirconium phosphate and titanium phosphate. J Mol Catal A Chem 240(1–2):1–6Google Scholar
  41. Das B, Mandal TK, Patra S (2015) A comprehensive study on Chlorella pyrenoidosa for phenol degradation and its potential applicability as biodiesel feedstock and animal feed. Appl Biochem Biotechnol 176(5):1382–1401CrossRefPubMedGoogle Scholar
  42. Dayana Priyadharshini S, Bakthavatsalam AK (2017a) Phycoremediation of phenolic effluent of a coal gasification plant by Chlorella pyrenoidosa. Process Saf Environ Prot 111:31–39CrossRefGoogle Scholar
  43. Dayana Priyadharshini S, Bakthavatsalam AK (2017b) Effect of nutrients on Chlorella pyrenoidosa for treatment of phenolic effluent of coal gasification plant. Environ Sci Pollut Res 24(15):13594–13603CrossRefGoogle Scholar
  44. de Vree JH, Bosma R, Janssen M, Barbosa MJ, Wijffels RH (2015) Comparison of four outdoor pilot-scale photobioreactors. Biotechnol Biofuels 8:215CrossRefPubMedPubMedCentralGoogle Scholar
  45. De-Bashan LE, Antoun H, Bashan Y (2008) Involvement of indole-3-acetic acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J Phycol 44(4):938–947CrossRefPubMedGoogle Scholar
  46. Di Caprio F, Altimari P, Pagnanelli F (2015) Integrated biomass production and biodegradation of olive mill wastewater by cultivation of Scenedesmus sp. Algal Res 9:306–311CrossRefGoogle Scholar
  47. Di Caprio F, Altimari P, Pagnanelli F (2018) Integrated microalgae biomass production and olive mill wastewater biodegradation: optimization of the wastewater supply strategy. Chem Eng J 349:539–546CrossRefGoogle Scholar
  48. Duan W, Meng F, Cui H, Lin Y, Wang G, Wu J (2018) Ecotoxicity of phenol and cresols to aquatic organisms: a review. Ecotoxicol Environ Saf 15(157):441–456CrossRefGoogle Scholar
  49. Emerson D, Chauchan S, Oriel P, Breznak JA (1994) Haloferax sp. D1227, a halophilic archaeon capable of growth on aromatic compounds. Arch Microbiol 161(6):445–452CrossRefGoogle Scholar
  50. Environmental Protection Agency, EPA (2014) Toxic and priority pollutants under the Clean Water Act, 40 CFR Part 423, Appendix A. Available at: https://19january2017snapshot.epa.gov/sites/production/files/2015-09/documents/priority-pollutant-list-epa.pdf
  51. Eriksen NT (2008) The technology of microalgal culturing. Biotechnol Lett 30(9):1525–1536CrossRefPubMedGoogle Scholar
  52. Essam T, Amin MA, ElTayeb O, Mattiasson B, Guieysse B (2006) Biological treatment of industrial wastes in a photobioreactor. Water Sci Technol 53(11):117–125CrossRefPubMedGoogle Scholar
  53. Essam T, Amin M, ElTayeb O, Mattiasson B, Guieysse B (2007) Solar-based detoxification of phenol and p-nitrophenol by sequential TiO2 photocatalysis and photosynthetically aerated biological treatment. Water Res 41(8):1697–1704CrossRefPubMedGoogle Scholar
  54. Essam T, ElRakaiby M, Hashem A (2013) Photosynthetic based algal/bacterial combined treatment of mixtures of organic pollutants and CO2 mitigation in a continuous photobioreactor. World J Microbiol Biotechnol 29(6):969–974CrossRefPubMedGoogle Scholar
  55. Essam T, El Rakaiby M, Agha A (2014) Remediation of the effect of adding cyanides on an algal/bacterial treatment of a mixture of organic pollutants in a continuous photobioreactor. Biotechnol Lett 36(9):1773–1781CrossRefPubMedGoogle Scholar
  56. European Union, EU (2013) Council Directive 2013/39/EU amending directives 2000/60/EC and 2008/105/EC as regards priority substances in the field of water policy. Off J Eur Union L226Google Scholar
  57. Field JA, Sierra-Álvarez R (2008) Microbial degradation of chlorinated phenols. Rev Environ Sci Biotechnol 7(3):211–241CrossRefGoogle Scholar
  58. Filipowicz N, Momotko M, Boczkaj G, Pawlikowski T, Wanarska M, Cieśliński H (2017) Isolation and characterization of phenol-degrading psychrotolerant yeasts. Water Air Soil Pollut 228(6):210CrossRefPubMedPubMedCentralGoogle Scholar
  59. Folke J, Lund U (1983) Occurrence of low- and high-chlorinated phenols in municipal sewage before and after passing through biological treatment plants. J Chromatogr 279:189–198CrossRefPubMedGoogle Scholar
  60. Franchi O, Bovio P, Ortega-Martínez E, Rosenkranz F, Chamy R (2018) Active and total microbial community dynamics and the role of functional genes bamA and mcrA during anaerobic digestion of phenol and p-cresol. Bioresour Technol 264:290–297CrossRefPubMedGoogle Scholar
  61. Galíndez-Mayer J, Ramón-Gallegos J, Ruiz-Ordaz N, Juárez-Ramírez C, Salmerón-Alcocer A, Poggi-Varaldo HM (2008) Phenol and 4-chlorophenol biodegradation by yeast Candida tropicalis in a fluidized bed reactor. Biochem Eng J 38(2):147–157CrossRefGoogle Scholar
  62. Gallegos A, Fortunato MS, Foglia J, Rossi S, Gemini V, Gomez L, Gomez CE, Higa LE, Korol SE (2003) Biodegradation and detoxification of phenolic compounds by pure and mixed indigenous cultures in aerobic reactors. Int Biodeterior Biodegradation 52(4):261–267CrossRefGoogle Scholar
  63. Gao QT, Wong YS, Tam NFY (2011) Removal and biodegradation of nonylphenol by different Chlorella species. Mar Pollut Bull 63(5–12):445–451CrossRefPubMedGoogle Scholar
  64. Ghasemi Y, Rasoul-Amini S, Fotooh-Abadi E (2011) Review: the biotransformation, biodegradation and bioremediation of organic compounds by microalgae. J Phycol 47(5):969–980CrossRefPubMedGoogle Scholar
  65. Gibson DT, Subrawahian V (1984) Microbial degradation of aromatic hydrocarbons. In: Gibson DT (ed) Microbial degradation of organic compounds. Marcel Dekker, New York, pp 181–252Google Scholar
  66. González LE, Bashan Y (2000) Increased growth of the microalga Chlorella vulgaris when coimmobilized and cocultured in alginate beads with the plant-growth-promoting bacterium Azospirillum brasilense. Appl Environ Microbiol 66(4):1527–1531CrossRefPubMedPubMedCentralGoogle Scholar
  67. González G, Herrera MG, García MT, Peña MM (2001) Biodegradation of phenol in a continuous process: comparative study of stirred tank and fluidized-bed bioreactors. Bioresour Technol 76(3):245–251CrossRefPubMedGoogle Scholar
  68. Gouveia L, Graça S, Sousa C, Ambrosano L, Ribeiro B, Botrel EP, Neto PC, Ferreira AF, Silva CM (2016) Microalgae biomass production using wastewater: treatment and costs: scale-up considerations. Algal Res 16:167–176CrossRefGoogle Scholar
  69. Grossart HP, Simon M (2007) Interactions of planktonic algae and bacteria: effects on algal growth and organic matter dynamics. Aquat Microb Ecol 47(2):163–176CrossRefGoogle Scholar
  70. Guieysse B, Borde X, Muñoz R, Hatti-Kaul R, Nugier-Chauvin C, Patin H, Mattiasson B (2002) Influence of the initial composition of algal-bacterial microcosms on the degradation of salicylate in a fed-batch culture. Biotechnol Lett 24(7):531–538CrossRefGoogle Scholar
  71. Gupta PL, Lee SM, Choi HJ (2015) A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol 31(9):1409–1417CrossRefPubMedGoogle Scholar
  72. Harborne JB, Simmonds NW (1964) Biochemistry of phenolic compounds. Academic, LondonGoogle Scholar
  73. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177–192CrossRefGoogle Scholar
  74. Harrass MC, Kindig AC, Taub FB (1985) Responses of blue-green and green algae to streptomycin in unialgal and paired culture. Aquat Toxicol 6(1):1–11CrossRefGoogle Scholar
  75. Harwood CS, Parales RE (1996) The β-ketoadipate pathway and the biology of self-identity. Ann Rev Microbiol 50:553–590CrossRefGoogle Scholar
  76. Hernández JP, de-Bashan L, Johana-Rodriguez D, Rodriguez Y, Bashan Y (2009) Growth promotion of the freshwater microalga Chlorella vulgaris by the nitrogen-fixing, plant growth-promoting bacterium Bacillus pumilus from arid zone soils. Eur J Soil Biol 45(1):88–93CrossRefGoogle Scholar
  77. Heukelekian H (1956) Purifying chemically polluted waters. Ind Eng Chem 48(9):1403CrossRefGoogle Scholar
  78. Hirooka T, Akiyama Y, Tsuji N, Nakamura T, Nagase H, Hirata K, Miyamoto K (2003) Removal of hazardous phenols by microalgae under photoautotrophic conditions. J Biosci Bioeng 95(2):200–203CrossRefPubMedGoogle Scholar
  79. Hirooka T, Nagase H, Uchida K, Hiroshige Y, Ehara Y, Nishikawa J, Nishihara T, Miyamoto HZ (2005) Biodegradation of bisphenol A and disappearance of its estrogenic activity by the green alga Chlorella fusca var. vacuolata. Environ Toxicol Chem 24(8):1896–1901CrossRefPubMedGoogle Scholar
  80. Hirooka T, Nagase H, Hirata K, Miyamoto K (2006) Degradation of 2,4-dinitrophenol by a mixed culture of photoautotrophic microorganisms. Biochem Eng J 29(1):157–162CrossRefGoogle Scholar
  81. Huang Q, Jiang F, Wang L, Yang C (2017) Design of photobioreactors for mass cultivation of photosynthetic organisms. Engineering 3:318–329CrossRefGoogle Scholar
  82. Ji Q, Tabassum S, Yu G, Chua C, Zhang Z (2015) A high efficiency biological system for treatment of coal gasification wastewater – a key in-depth technological research. RSC Adv 5(50):40402–40413CrossRefGoogle Scholar
  83. Jiang HL, Tay JH, Maszenan AM, Tay STL (2006) Enhanced phenol biodegradation and aerobic granulation by two coaggregating bacterial strains. Environ Sci Technol 40(19):6137–6142CrossRefPubMedGoogle Scholar
  84. Joutey NT, Bahafid W, Sayel H, El Ghachtouli N (2013) Biodegradation: involved microorganisms and genetically engineered microorganisms. In: Chamy R (ed) Biodegradation: life of science, chapter 11. In Tech Open, Croatia, pp 289–320Google Scholar
  85. Juárez-Jiménez B, Reboleiro-Rivas P, González-López J, Pesciaroli C, Barghini P, Fenice M (2012) Immobilization of Delftia tsuruhatensis in macro-porous cellulose and biodegradation of phenolic compounds in repeated batch process. J Biotechnol 157(1):148–153CrossRefPubMedGoogle Scholar
  86. Jusoh N, Razali F (2008) Microbial consortia from residential wastewater for bioremediation of phenol in a chemostat. J Teknol 48:51–60Google Scholar
  87. Juteau P, Côté V, Duckett MF, Beaudet R, Lépine F, Villemur R, Bisaillon JG (2005) Cryptanaerobacter phenolicus gen. nov., sp nov., an anaerobe that transforms phenol into benzoate via 4-hydroxybenzoate. Int J Syst Evol Microbiol 55(P1):245–250CrossRefPubMedGoogle Scholar
  88. Kanekar PP, Sarneik SS, Kelkar AS (1998) Bioremediation of phenol by alkaliphilic bacteria isolated form alkaline Lake of Lonar, India. J Appl Microbiol 85(Suppl 1):128S–133SCrossRefPubMedGoogle Scholar
  89. Kato S, Chino K, Kamimura N, Masai E, Yumoto I, Kamagata Y (2015) Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil. Sci Rep 5:14295CrossRefPubMedPubMedCentralGoogle Scholar
  90. Kazamia E, Czesnick H, Nguyen TT, Croft MT, Sherwood E, Sasso S, Hodson SJ, Warren MJ, Smith AG (2012) Mutualistic interactions between vitamin B12-dependent algae and heterotrophic bacteria exhibit regulation. Environ Microbiol 14(6):1466–1476CrossRefPubMedGoogle Scholar
  91. Khemili-Talbi S, Kebbouche-Gana S, Akmoussi-Toumi S, Angar Y, Gana ML (2015) Isolation of an extremely halophilic arhaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity. Extremophiles 19(6):1109–1120CrossRefPubMedGoogle Scholar
  92. Kim BH, Ramanan R, Cho DH, Oh HM, Kim H (2014) Role of Rhizobium, a plant growth promoting bacterium, in enhancing algal biomass through mutualistic interaction. Biomass Bioenergy 69:95–105CrossRefGoogle Scholar
  93. Kim E, Lee J, Han G, Hwang S (2018) Comprehensive analysis of microbial communities in full-scale mesophilic and thermophilic anaerobic digesters treating food waste-recycling wastewater. Bioresour Technol 259:442–450CrossRefPubMedGoogle Scholar
  94. Klekner V, Kosaric N (1992) Degradation of phenols by algae. Environ Technol 13:493–501CrossRefGoogle Scholar
  95. Kotresha D, Vidyasagar GM (2017) Phenol degradation in a packed bed reactor by immobilized cells of Pseudomonas aeruginosa MTCC 4997. Biocatal Agric Biotechnol 10:386–389Google Scholar
  96. Krastanov A, Alexieva Z, Yemendzhiev H (2013) Microbial degradation of phenol and phenolic derivatives. Eng Life Sci 13(1):76–87CrossRefGoogle Scholar
  97. Kües U (2015) Fungal enzymes for environmental management. Curr Opin Biotechnol 33:268–278CrossRefPubMedGoogle Scholar
  98. Larsdotter K (2006) Wastewater treatment with microalgae – a literature review. Vatten 62:31–38Google Scholar
  99. Lattanzio V, Lattanzio VMT, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. In: Imperato E (ed) Phytochemistry: advances in research. Research Signpost, Trivandrum, pp 23–67Google Scholar
  100. Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 15(2–3):74–92CrossRefPubMedGoogle Scholar
  101. Lee HC, Lee M, Den W (2015) Spirulina maxima for phenol removal: study on its tolerance, biodegradability and phenol-carbon assimilability. Water Air Soil Pollut 226:395CrossRefGoogle Scholar
  102. Levén L, Nyberg K, Schnürer A (2012) Conversion of phenols during anaerobic digestion of organic solid waste: a review of important microorganisms and impact of temperature. J Environ Manag 95:99–103CrossRefGoogle Scholar
  103. Liao Q, Li L, Chen R, Zhu X (2014) A novel photobioreactor generating the light/dark cycle to improve microalgae cultivation. Bioresour Technol 161:186–191CrossRefPubMedGoogle Scholar
  104. Liká K, Papadakis IA (2009) Modeling the biodegradation of phenolic compounds by microalgae. J Sea Res 62:135–146CrossRefGoogle Scholar
  105. Lima SAC, Castro PML, Morais R (2003) Biodegradation of p-nitrophenol by microalgae. J Appl Phycol 15(2–3):137–142CrossRefGoogle Scholar
  106. Lima SAC, Filomena M, Raposo J, Castro PML, Morasis RM (2004) Biodegradation of p-chlorophenol by microalgae consortium. Water Res 38(1):97–102CrossRefPubMedGoogle Scholar
  107. Liotta LF, Gruttadauria M, Di Carlo G, Perrini G, Librando V (2009) Heterogeneous catalytic degradation of phenolic substrates: catalysts activity. J Hazard Mater 162(2–3):588–606CrossRefPubMedGoogle Scholar
  108. Lovell CH, Eriksen NT, Lewitus AJ, Chen YP (2002) Resistance of the marine diatom Thalassiosira sp. to toxicity of phenolic compounds. Mar Ecol Prog Ser 229:11–18CrossRefGoogle Scholar
  109. Lv Y, Chen Y, Song W, Hu Y (2014) Enhanced selection of micro-aerobic pentachlorophenol degrading granular sludge. J Hazard Mater 280:134–142CrossRefPubMedGoogle Scholar
  110. Mahdavi H, Prasad V, Liu Y, Ulrich AC (2015) In situ biodegradation of naphthenic acids in oil sands tailings pond water using indigenous algae-bacteria consortium. Bioresour Technol 187:97–105CrossRefPubMedGoogle Scholar
  111. Margesin R, Schiner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56(5–6):650–663CrossRefPubMedGoogle Scholar
  112. Martínková L, Kotik M, Marková E, Homolka L (2016) Biodegradation of phenolic compounds by Basidiomycota and its phenol oxidases: a review. Chemosphere 149:373–382CrossRefPubMedGoogle Scholar
  113. Maza-Márquez P, Martínez-Toledo MV, González-López J, Rodelas B, Juárez-Jiménez B, Fenice M (2013) Biodegradation of olive washing wastewater pollutants by highly efficient phenol-degrading strains selected from adapted bacterial community. Int Biodeterior Biodegradation 82:192–198CrossRefGoogle Scholar
  114. Maza-Márquez P, Martínez-Toledo MV, Fenice M, Andrade L, Laserrot A, González-López J (2014) Biotreatment of olive washing wastewater by a selected microalgal-bacterial consortium. Int Biodeterior Biodegradation 88:69–76CrossRefGoogle Scholar
  115. Maza-Márquez P, González-Martínez A, Martínez-Toledo MV, Fenice M, Laserrot A, González-López J (2017a) Biotreatment of industrial olive washing waster by synergetic association microalgal-bacterial consortia in a photobioreactor. Environ Sci Pollut Res Int 24:527–538CrossRefPubMedGoogle Scholar
  116. Maza-Márquez P, González-Martínez A, Rodelas B, González-López J (2017b) Full-scale photobioreactor for biotreatment of olive washing water: structure and diversity of the microalgae-bacteria consortium. Bioresour Technol 238:389–398CrossRefPubMedGoogle Scholar
  117. Meyer JS, Marcus MD, Bergman HL (1984) Inhibitory interactions of aromatic organics during microbial degradation. Environ Sci Technol 3(4):583–587Google Scholar
  118. Michałowicz J, Duda W (2007) Phenols – sources and toxicity. Pol J Environ Stud 16(3):347–362Google Scholar
  119. Min M, Wang L, Li Y, Mohr M, Hu B, Zhou W, Chen P, Ruan R (2011) Cultivating Chlorella sp. in a pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Appl Biochem Biotechnol 165(1):123–137CrossRefPubMedGoogle Scholar
  120. Muñoz R, Guieysse B (2006) Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res 40(15):2799–2815CrossRefPubMedGoogle Scholar
  121. Muñoz R, Köllner C, Guieysse B, Mattiasson B (2003) Salicylate biodegradation by various algal–bacterial consortia under photosynthetic oxygenation. Biotechnol Lett 25(22):1905–1911CrossRefPubMedGoogle Scholar
  122. Muñoz R, Köllner C, Guieysse B, Mattiasson B (2004) Photosynthetically oxygenated salicylate biodegradation in a continuous stirred tank photobioreactor. Biotechnol Bioeng 87(6):797–803CrossRefPubMedGoogle Scholar
  123. Muñoz R, Jacinto MSA, Guieysse B, Mattiasson B (2005) Combined carbon and nitrogen removal from acetonitrile using algal-bacterial reactors. Appl Microbiol Biotechnol 67(5):609–707CrossRefGoogle Scholar
  124. Muñoz R, Köllner C, Guieysse B (2009) Biofilm photobioreactors for the treatment of industrial waste-waters. J Hazard Mater 161(1):29–34CrossRefPubMedGoogle Scholar
  125. Nešvera J, Rucká L, Pátek M (2015) Catabolism of phenol and its derivatives in bacteria: genes, their regulation, and use in the biodegradation of toxic pollutants. Adv Appl Microbiol 93:107–160CrossRefPubMedGoogle Scholar
  126. Niaounakis M, Halvadakis C (2006) Olive processing waste management, Waste Management Series, vol 5. Elsevier, LondonGoogle Scholar
  127. Nikel PI, Pérez-Pantoja D, de Lorenzo V (2013) Why are chlorinated pollutants so difficult to degrade aerobically? Redox stress limits 1,3-dichloprop-1-ene metabolism by Pseudomonas pavonaceae. Philos Trans R Soc B 368(1616):20120377CrossRefGoogle Scholar
  128. Nowak A, Mrozik A (2018) Degradation of 4-chlorophenol and microbial diversity in soil inoculated with single Pseudomonas sp. CF600 and Stenotrophomonas maltophilia KB2. J Environ Manag 215:216–229CrossRefGoogle Scholar
  129. Oesterhelt D, Patzelt H, Kesler B (1998) Decomposition of halogenated hydrocarbons by halophilic bacteria. Patent DE19639894Google Scholar
  130. Oller I, Malato S, Sánchez-Pérez JA (2011) Combination of advanced oxidation processes and biological treatments for wastewater decontamination – a review. Sci Total Environ 409:4141–4166CrossRefPubMedGoogle Scholar
  131. Osanai T, Park YI, Nakamura Y (2017) Editorial: biotechnology of microalgae, based on molecular biology and biochemistry of eukaryotic algae and cyanobacteria. Front Microbiol 8:118CrossRefPubMedPubMedCentralGoogle Scholar
  132. Oswald WJ (2003) My sixty years in applied algollogy. J Appl Phycol 15:99–106CrossRefGoogle Scholar
  133. Oswald WJ, Gotaas HB (1957) Photosynthesis in sewage treatment. Trans Am Soc Civil Eng 122(1):73–97Google Scholar
  134. Otto B, Beuchel C, Liers C, Reisser W, Harms H, Schlosser D (2015) Laccase-like enzyme activities from chlorophycean green algae with potential for bioconversion of phenolic pollutants. FEMS Microbiol Lett 362(11):pii:fnv072CrossRefGoogle Scholar
  135. Paraskeva P, Diamadopoulos E (2006) Technologies for olive mill wastewater (OMW) treatment: a review. J Chem Technol Biotechnol 81(9):1475–1485CrossRefGoogle Scholar
  136. Passos CT, Michelon M, Burkert JFM, Kalil SJ, Burkert CAV (2010) Biodegradation of phenol by free and encapsulated cells of a new Aspergillus sp. isolated from a contaminated site in southern Brazil. Afr J Biotechnol 9(40):6716–6720Google Scholar
  137. Petroutsos D, Katapodis P, Christakopoulos P, Kekos D (2007) Removal of p-chlorophenol by the marine microalga Tetraselmis marina. J Appl Phycol 19(5):485–490Google Scholar
  138. Pinto G, Pollio A, Previtera L, Temussi F (2002) Biodegradation of phenols by microalgae. Biotechnol Lett 24(24):2047–2051CrossRefGoogle Scholar
  139. Pinto G, Pollio A, Previtera L, Stanzione M, Temussi F (2003) Removal of low molecular weight phenols from olive oil mill wastewater using microalgae. Biotechnol Lett 25(19):1657–1659CrossRefPubMedGoogle Scholar
  140. Plotkin JS (2016) What’s new in phenol production? ASC News. Available at: https://www.acs.org/content/acs/en/pressroom/cutting-edge-chemistry/what-s-new-in-phenol-production-.html
  141. Pozo C, Rodelas B, Martínez-Toledo MV, Vílchez R, González-López J (2007) Removal of organic load from olive washing water by an aerated submerged biofilter and profiling of the bacterial community involved in the process. J Microbiol Biotechnol 17(5):784–791PubMedGoogle Scholar
  142. Prasad SBC, Babu RS, Chakrapani R, Ramachandra R, Rao CSV (2010) Kinetics of high concentrated phenol biodegradation by Acinetobacter baumannii. Int J Biotechnol Biochem 6(4):609–615Google Scholar
  143. Priac A, Morin-Crini N, Druart C, Gavoille S, Bradu C, Lagarrigue C, Torri G, Winterton P, Crini G (2017) Alkylphenol and alkylphenol polyethoxylates in water and wastewater: a review of options for their elimination. Arab J Chem 10(Supplement 2):S3749–S3773CrossRefGoogle Scholar
  144. Qiu YL, Hanada S, Ohashi A, Harada H, Kamagata Y, Sekiguchi Y (2008) Syntrophorhabdus aromaticivorans gen. nov., sp. nov., the first cultured anaerobe capable of degrading phenol to acetate in obligate syntrophic associations with a hydrogenotrophic methanogen. Appl Environ Microbiol 74(7):2051–2058CrossRefPubMedPubMedCentralGoogle Scholar
  145. Radjenovic J, Sedlak DL (2015) Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water. Environ Sci Technol 49(19):11292–11302CrossRefPubMedGoogle Scholar
  146. Rahmanian N, Jafari SM, Galanakis CM (2014) Recovery and removal of phenolic compounds from olive mill wastewater. J Am Oil Chem Soc 91(1):1–18CrossRefGoogle Scholar
  147. Ramanan R, Kim BH, Cho DH, Oh HM, Kim HS (2016) Algae-bacteria interactions: evolution, ecology and emerging applications. Biotechnol Adv 34(1):14–29CrossRefPubMedGoogle Scholar
  148. Rizwan M, Mujtaba G, Memon SA, Leed K, Rashide N (2018) Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sustain Energy Rev 92:394–404CrossRefGoogle Scholar
  149. Rosenkranz F, Cabrol L, Carballa M, Donoso-Bravo A, Cruz L, Ruiz-Filippi G, Chamy R, Lema JM (2013) Relationship between phenol degradation efficiency and microbial community structure in an anaerobic SBR. Water Res 47(17):6739–6749CrossRefPubMedGoogle Scholar
  150. Rucká L, Nešvera J, Pátek M (2017) Biodegradation of phenol and its derivatives by engineered bacteria: current knowledge and perspectives. World J Microbiol Biotechnol 33(9):174CrossRefPubMedGoogle Scholar
  151. Ruiz-Dueñas FJ, Martínez AT (2009) Microbial degradation of lignin: how a bulky recalcitrant polymer is efficiently recycled in nature and how we can take advantage of this. Microb Biotechnol 2009 2(2):164–177CrossRefPubMedPubMedCentralGoogle Scholar
  152. Ryu BG, Kim J, Han JI, Yang JW (2017) Feasibility of using a microalgal-bacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids. Bioresour Technol 225:58–66CrossRefPubMedGoogle Scholar
  153. Safonova E, Kvitko KV, Iankevitch MI, Surgko LF, Afti IA, Reisser W (2004) Biotreatment of industrial wastewater by selected algal-bacterial consortia. Eng Life Sci 4(4):347–353CrossRefGoogle Scholar
  154. Schmeling S, Fuchs G (2009) Anaerobic metabolism of phenol in proteobacteria and further studies of phenylphosphate carboxylase. Arch Microbiol 191(12):869–878CrossRefPubMedGoogle Scholar
  155. Semple KT (1998) Heterotrophic growth on phenolic mixtures by Ochromonas danica. Res Microbiol 149(1):65–72CrossRefPubMedGoogle Scholar
  156. Semple KT, Cain RB (1996) Biodegradation of phenols by the alga Ochromonas danica. Appl Environ Microbiol 62(4):1265–1273PubMedPubMedCentralGoogle Scholar
  157. Semple KT, Cain RB, Schmidt S (1999) Biodegradation of aromatic compounds by microalgae. FEMS Microbiol Lett 170(2):291–300CrossRefGoogle Scholar
  158. Sharma R (2014) Polyphenols in health and disease. In: Watson RR, Preedy VR, Zibadi S (eds) Polyphenols in human health and disease, vol 1. Elsevier, Oxford, pp 757–777CrossRefGoogle Scholar
  159. Shashirekha S, Uma L, Subramanian G (1997) Phenol degradation by the marine cyanobacterium Phormidium valderianum BDU 30501. J Ind Microbiol Biotechnol 19(2):130–133CrossRefGoogle Scholar
  160. Shen YH (2002) Removal of phenol from water by adsorption–flocculation using organobentonite. Water Res 36(5):1107–1114CrossRefPubMedGoogle Scholar
  161. Singh A, Kumar V, Srivastana JN (2013) Assessment of bioremediation of oil and phenol contents in refinery waste water via bacterial consortium. J Pet Environ Biotechnol 4:3Google Scholar
  162. Sobiesak M (2017) Chemical structure of phenols and its consequence for sorption processes. In: Soto-Hernández M, Palma-Tenango M, García-Mateos MR (eds) Phenolic compounds-natural sources, importance and applications, chapter 1. InTech Open, Croatia, pp 3–26Google Scholar
  163. Stoilova I, Krastanov A, Stanchev V, Daniel D, Gerginova M, Alexieva Z (2006) Biodegradation of high amounts of phenol, catechol, 2,4-dichlorophenol and 2,6-dimethoxyphenol by Aspergillus awamori cells. Enzym Microb Technol 39(5):1036–1041CrossRefGoogle Scholar
  164. Stoilova I, Krastanov A, Yanakieva I, Kratchanova M, Yemendjiev H (2007) Biodegradation of mixed phenolic compounds by Aspergillus awamori NRRL 3112. Int Biodeterior Biodegradation 60(4):342–346CrossRefGoogle Scholar
  165. Störmer K (1908) Ueber die Wirkung des Schwefelkohlenstoffs und ähnlicher Stoffe auf den Boden. Zentralbl Bakteriol Parasitenkd Infektionskr Hyg Abt 2 Naturwiss 20:282–286Google Scholar
  166. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2011) Consortia of cyanobacteria/microalgae and bacteria: biotechnological potential. Biotechnol Adv 29:896–907CrossRefPubMedGoogle Scholar
  167. Subashchandrabose SR, Ramakrishnan B, Megharaj M, Venkateswarlu K, Naidu R (2013) Mixotrophic cyanobacteria and microalgae as distinctive biological agents for organic pollutant degradation. Environ Int 51:59–72CrossRefPubMedGoogle Scholar
  168. Sueoka K, Satoh H, Onuki M, Mino T (2009) Microorganisms involved in anaerobic phenol degradation in the treatment of synthetic coke-oven wastewater detected by RNA stable-isotope probing. FEMS Microbiol Lett 291(2):169–174CrossRefPubMedGoogle Scholar
  169. Suthersan S (1996) Remediation engineering: design concepts, Geraghty & Miller Environmental Sciences and Engineering Series. Lewis Publishers, CRC Press, Boca RatonCrossRefGoogle Scholar
  170. Tang X, He LY, Tao XQ, Dang Z, Guo CL, Lu GN, Yi XY (2010) Construction of an artificial microalgal-bacterial consortium that efficiently degrades crude oil. J Hazard Mater 181(1–3):1158–1162CrossRefPubMedGoogle Scholar
  171. Tarlan E, Dilek FB, Yetis U (2002) Effectiveness of algae in the treatment of a wood-based pulp and paper industry wastewater. Bioresour Technol 84(1):1–5CrossRefPubMedGoogle Scholar
  172. Terzyk AP (2007) The impact of carbon surface chemical composition on the adsorption of phenol determined at the real oxic and anoxic conditions. Appl Surf Sci 253(13):5752–5755CrossRefGoogle Scholar
  173. Thomas S, Sarfaraz S, Misharaz LC, Iyengar L (2002) Degradation of phenol and phenolic compounds by a defined denitrifying bacterial culture. World J Microbiol Biotechnol 18(1):57–63CrossRefGoogle Scholar
  174. Throop WM (1975) Alternative methods of phenol wastewater control. J Hazard Mater 1(4):319–329CrossRefGoogle Scholar
  175. Tikoo V, Scragg AH, Shales SW (1997) Degradation of pentachlorophenol by microalgae. J Chem Technol Biotechnol 68(4):425–431CrossRefGoogle Scholar
  176. Tschech A, Fuchs G (1987) Anaerobic degradation of phenol by pure cultures of newly isolated denitrifying pseudomonads. Arch Microbiol 148(3):213–217CrossRefPubMedGoogle Scholar
  177. Varma RJ, Gaikwad BG (2008) Rapid and high biodegradation of phenols catalyzed by Candida tropicalis NCIM 3556 cells. Enzym Microb Technol 43(6):431–435CrossRefGoogle Scholar
  178. Vasconcelos-Fernandes T, Shrestha R, Sui Y, Papini G, Zeeman G, Vet LEM, Wijffels RH, Lamers P (2015) Closing domestic nutrient cycles using microalgae. Environ Sci Technol 49(20):12450–12456CrossRefPubMedGoogle Scholar
  179. Veeresh GS, Kumar P, Mehrotra I (2005) Treatment of phenol and cresols in upflow anaerobic sludge blanket (UASB) process: a review. Water Res 39(1):154–170CrossRefPubMedGoogle Scholar
  180. Vermerris W, Nicholson R (2008) Phenolic compound biochemistry. Springer Science + Business Media B.V., DordrechtGoogle Scholar
  181. Viggiani A, Olivieri G, Siani L, Di Donato A, Marzocchella A, Salatino P, Barbieri P, Galli E (2006) An airlift biofilm reactor for the biodegradation of phenol by Pseudomonas stutzeri OX1. J Biotechnol 123(4):464–477CrossRefPubMedGoogle Scholar
  182. Wang H, Liu L, Liu ZP, Qin S (2010) Investigations of the characteristics and mode of action of an algalytic bacterium isolated from Tai Lake. J Appl Phycol 22(4):473–478CrossRefGoogle Scholar
  183. Wang Y, Song J, Zhao W, He X, Chen J, Xiao M (2011) In situ degradation of phenol and promotion of plant growth in contaminated environments by a single Pseudomonas aeruginosa strain. J Hazard Mater 192(1):354–360PubMedGoogle Scholar
  184. Wang B, Lan CQ, Horsman M (2012) Closed photobioreactors for production of microalgal biomasses. Biotechnol Adv 30(4):904–912CrossRefPubMedGoogle Scholar
  185. Wang L, Xue C, Wang L, Zhao Q, Wei W, Sun Y (2016) Strain improvement of Chlorella sp. for phenol biodegradation by adaptive laboratory evolution. Bioresour Technol 205:264–268CrossRefPubMedGoogle Scholar
  186. Wang R, Diao P, Chen Q, Wu H, Xu N, Duan S (2017) Identification of novel pathways for biodegradation of bisphenol A by the green alga Desmodesmus sp. WR1, combined with mechanistic analysis at the transcriptome level. Chem Eng J 321:424–431CrossRefGoogle Scholar
  187. Watanabe K, Takihana H, Aoyagi H, Hanada S, Watanabe Y, Ohmura N, Saiki H, Tanaka H (2005) Symbiotic association in Chlorella culture. FEMS Microbiol Ecol 51(2):187–196CrossRefPubMedGoogle Scholar
  188. Wu Y, Hu Z, Yang L, Graham B, Kerr PG (2011) The removal of nutrients from non-point source wastewater by a hybrid bioreactor. Bioresour Technol 102(3):2419–2426CrossRefPubMedGoogle Scholar
  189. Wurster M, Mundt S, Hammer E, Schauer F, Lindequist U (2003) Extracellular degradation of phenol by the cyanobacterium Synechococcus PCC 7002. J Appl Phycol 15(2–3):171–176CrossRefGoogle Scholar
  190. Xiong JQ, Kurade MB, Jeon BH (2017) Can microalgae remove pharmaceutical contaminants from water? Trends Biotechnol 36(1):30–44CrossRefPubMedGoogle Scholar
  191. Yang S, Wu RSS, Kong RYC (2002) Biodegradation and enzymatic responses in the marine diatom Skeletonema costatum upon exposure to 2,4-dichlorophenol. Aquat Toxicol 59(3–4):191–200CrossRefPubMedGoogle Scholar
  192. Yordanova G, Godjevargova T, Nenkova R, Ivanova D (2013) Biodegradation of phenol and phenolic derivatives by a mixture of immobilized cells of Aspergillus awamori and Trichosporon cutaneum. Biotechnol Biotechnol Equip 27(2):3681–3688CrossRefGoogle Scholar
  193. Zhang B, Lens PNL, Shi W, Zhang R, Zhang Z, Guo Y, Bao X, Cui F (2018) Enhancement of aerobic granulation and nutrient removal by an algal–bacterial consortium in a lab-scale photobioreactor. Chem Eng J 334:2373–2382CrossRefGoogle Scholar
  194. Zhong W, Wang D, Xu X (2012) Phenol removal efficiencies of sewage treatment processes and ecological risks associated with phenols in effluents. J Hazard Mater 217–218:286–292CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Paula Maza-Márquez
    • 1
  • Alejandro González-Martínez
    • 1
  • Belén Juárez-Jiménez
    • 1
  • Belén Rodelas
    • 1
  • Jesús González-López
    • 1
  1. 1.Department of Microbiology, Faculty of Pharmacy, and Institute of Water ResearchUniversity of GranadaGranadaSpain

Personalised recommendations