Advertisement

Transcriptomics as a First Choice Gate for Fungal Biodegradation Processes Description

  • Alejandro Ledezma-Villanueva
  • José Manuel Adame-Rodríguez
  • Elva T. Aréchiga-Carvajal
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Environmental impacts of xenobiotic compounds released to air, water, and soil have opened a way for bioremediation to emerge as a green technology that can be safely applied to reduce pollutant concentrations to a minimum in a relative short period of time. “Hard to break” molecules such as asphaltenes, celluloses, and dyes are better treated with mycoremediation techniques. Fungi are higher eukaryotic microorganisms that secrete a good quantity of enzymatic complexes to break covalent bonds on these xenobiotics. As mycoremediation analysis grew, a better understanding of fungal metabolism on extreme environmental conditions is needed to deepen bioremediation-related genes and processes. These can be reached by global molecular approaches such as transcriptomic studies. Until now, limited genomic functional annotations and efficient nucleic acid extractions in bioremediation processes are the main delaying issues in the advancing way to the understanding of these interesting fungal metabolic activities. In this section we expose common technical strategies of RNA extraction protocols and comparison of recent transcriptional studies, as a basic introduction to those interested in applying genomic global approaches, in this area in construction of future efficient application of mycoremediation.

Keywords

Fungal bioremediation Fungal enzymes Nucleic acid extraction Transcriptomics 

References

  1. Asemoloye MD, Ahmad R, Jonathan SG (2018) Transcriptomic responses of catalase, peroxidase and laccase encoding genes and enzymatic activities of oil spill inhabiting rhizospheric fungal strains. Environ Pollut 235:55–64CrossRefPubMedGoogle Scholar
  2. Audia JP, Patton MC, Winkler HH (2008) DNA microarray analysis of the heat shock transcriptome of the obligate intracytoplasmic pathogen Rickettsia prowazekii. Appl Environ Microbiol 74:7809–7812CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bailly J, Fraissinet-Tachet L, Verner MC, Debaud JC, Lemaire M, Wesolowski-Louvel M, Marmeisse R (2007) Soil eukaryotic functional diversity, a metatranscriptomic approach. ISME J 1:632CrossRefPubMedGoogle Scholar
  4. Bell TH, Joly S, Pitre FE, Yergeau E (2014) Increasing phytoremediation efficiency and reliability using novel omics approaches. Trends Biotechnol 32(5):271–280CrossRefPubMedGoogle Scholar
  5. Boon N, Marlé C, Top EM, Verstraete W (2000) Comparison of the spatial homogeneity of physico-chemical parameters and bacterial 16S rRNA genes in sediment samples from a dumping site for dredging sludge. Appl Microbiol Biotechnol 53:742–747CrossRefPubMedGoogle Scholar
  6. Bulow SE, Francis CA, Jackson GA, Ward BB (2008) Sediment denitrifier community composition and nirS gene expression investigated with functional gene microarrays. Environ Microbiol 10:3057–3069CrossRefPubMedGoogle Scholar
  7. Burton RJ, Coley-Smith JR (1993) Production and leakage of antibiotics by Rhizoctonia cerealis, R. oryzae-sativae and R. tuliparum. Mycol Res 97:86–90CrossRefGoogle Scholar
  8. Chigu NL, Hirosue S, Nakamura C, Teramoto H, Ichinose H, Wariishi H (2010) Cytochrome P450 monooxygenases involved in anthracene metabolism by the white-rot basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 87(5):1907–1916CrossRefPubMedGoogle Scholar
  9. Darby AC, Hall N (2008) Fast forward genetics. Nat Biotechnol 26:1248–1249CrossRefPubMedGoogle Scholar
  10. Das S (ed) (2014) Microbial biodegradation and bioremediation. Elsevier, Rourkela Odisha, pp 167–201CrossRefGoogle Scholar
  11. Deshmukh R, Khardenavis AA, Purohit HJ (2016) Diverse metabolic capacities of fungi for bioremediation. Indian J Microbiol 56(3):247–264CrossRefPubMedPubMedCentralGoogle Scholar
  12. Frias-Lopez J, Shi Y, Tyson GW, Coleman ML, Schuster SC, Chisholm SW, Delong EF (2008) From the cover: microbial community gene expression in ocean surface waters. Proc Natl Acad Sci U S A 105:3805–3810CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gao J, Liu L, Liu X, Zhou H, Lu J, Huang S, Wang Z (2009) The occurrence and spatial distribution of organo phosphorous pesticides in Chinese surface water. Bull Environ Contam Toxicol 82:223–229CrossRefPubMedGoogle Scholar
  14. Gilbert JA, Field D, Huang Y, Edwards R, Li W, Gilna P, Joint FI (2008) Detection of large numbers of novel sequences in the metatranscriptomes of complex marine microbial communities. PLoS One 3:3042CrossRefGoogle Scholar
  15. Gow NA, Latge JP, Munro CA (2017) The fungal cell wall: structure, biosynthesis, and function. Microbiol Spectr 5:1–25Google Scholar
  16. Guillén-Navarro K, Herrera-López D, López-Chávez MY, Cancino-Gómez M, Reyes-Reyes AL (2015) Assessment of methods to recover DNA from bacteria, fungi and archaea in complex environmental samples. Folia Microbiol 60(6):551–558Google Scholar
  17. Hawksworth DL (2001) The magnitude of fungal diversity: the 1.5 million species estimate revisited. Mycol Res 105(12):1422–1432CrossRefGoogle Scholar
  18. He Y, Zhao Y, Zhou G, Huang M (2009) Evaluation of extraction and purification methods for obtaining PCR-amplifiable DNA from aged refuse for microbial community analysis. Word J Microbiol Biotechnol 25(11):2043–2051CrossRefGoogle Scholar
  19. Hernández-López EL, Ramírez-Puebla ST, Vazquez-Duhalt R (2015) Microarray analysis of Neosartorya fischeri using different carbon sources, petroleum asphaltenes and glucose-peptone. Genom Data 5:235–237CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hugenholtz P, Tyson GW (2008) Microbiology: metagenomics. Nature 455:481CrossRefPubMedGoogle Scholar
  21. Illman BL, Yang VW, Ferge LA (2002a) US Patent No. 6,383,800. US Patent and Trademark Office, Washington, DCGoogle Scholar
  22. Illman BL, Yang VW, Ferge LA (2002b) US Patent No. 6,387,689. US Patent and Trademark Office, Washington, DCGoogle Scholar
  23. Illman BL, Yang VW, Ferge LA (2002c) US Patent No. 6,387,691. US Patent and Trademark Office, Washington, DCGoogle Scholar
  24. Illman BL, Yang VW, Ferge LA (2002d) US Patent No. 6,495,134. US Patent and Trademark Office, Washington, DCGoogle Scholar
  25. Illman BL, Yang VW, Ferge LA (2003) US Patent No. 6,664,102. US Patent and Trademark Office, Washington, DCGoogle Scholar
  26. Illman BL, Yang VW, Ferge LA (2004) US Patent No. 6,727,087. US Patent and Trademark Office, Washington, DCGoogle Scholar
  27. Illman BL, Yang VW, Ferge LA (2005) US Patent No. 6,972,169. US Patent and Trademark Office, Washington, DCGoogle Scholar
  28. Jiang YX, Wu JG, Yu KQ, Ai CX, Zou F, Zhou HW (2011) Integrated lysis procedures reduces extraction biases of microbial DNA from mangrove sediments. J Biosci Bioeng 111(2):153–157CrossRefPubMedGoogle Scholar
  29. Kameshwar AKS, Qin W (2017) Metadata analysis of Phanerochaete chrysosporium gene expression data identified common CAZymes encoding gene expression profiles involved in cellulose and hemicellulose degradation. Int J Biol Sci 13(1):85CrossRefPubMedPubMedCentralGoogle Scholar
  30. Kazemi M, Tahmasbi A, Valizadeh R, Naserian A, Soni A (2012) Organophosphate pesticides: a general review. Agric Sci Res J 2:512–522Google Scholar
  31. Ladino-Orjuela G, Gomes E, da Silva R, Salt C, Parsons JR (2016) Metabolic pathways for degradation of aromatic hydrocarbons by bacteria. Rev Environ Contam Toxicol 237:105–121PubMedGoogle Scholar
  32. Lamar RT, Lestan D, Smith CE, Dietrich DM (2000) US Patent No. 6,143,549. US Patent and Trademark Office, Washington, DCGoogle Scholar
  33. Leininger S, Urich T, Schloter M, Schwark L, Qi J, Nicol GW, Prosser JI, Schuster SC, Schleper C (2006) Archaea predominate among ammonia-oxidizing prokaryotes in soils. Nature 442:806CrossRefPubMedGoogle Scholar
  34. Liu Y, Zhou J, Omelchenko MV, Beliaev AS, Venkateswaran A, Stair J, Wu L, Thompson DK, Xu D, Rogozin IB, Gaidamakova EK, Zhai M, Makarova KS, Koonin EV, Daly MJ (2003) Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci U S A 100:4191–4196CrossRefPubMedPubMedCentralGoogle Scholar
  35. Maghsoudi E, Fortin N, Greer C, Maynard C, Pagé A, Duy SV, Dorner S (2016) Cyanotoxin degradation activity and mlr gene expression profiles of a Sphingopyxis sp. isolated from Lake Champlain, Canada. Environ Sci Process Impact 18(11):1417–1426CrossRefGoogle Scholar
  36. Mathews SL, Pawlak J, Grunden AM (2015) Bacterial biodegradation and bioconversion of industrial lignocellulosic streams. Appl Microbiol Biotechnol 99(7):2939–2954CrossRefPubMedGoogle Scholar
  37. McMaster R (2018) Is the fourth industrial revolution relevant to you? Nurs Health Sci 20(2):139–141CrossRefPubMedGoogle Scholar
  38. Medini D, Serruto D, Parkhill J, Relman DA, Donati C, Moxon R, Falkow S, Rappuoli R (2008) Microbiology in the post-genomic era. Nat Rev Microbiol 6:419CrossRefPubMedGoogle Scholar
  39. Mohite BV, Koli SH, Narkhede CP, Patil SN, Patil SV (2017) Prospective of microbial exopolysaccharide for heavy metal exclusion. Appl Biochem Biotechnol 183(2):582–600CrossRefPubMedGoogle Scholar
  40. Morais D, Pylro V, Clark IM, Hirsch PR, Tótola MR (2016) Responses of microbial community from tropical pristine coastal soil to crude oil contamination. Peer J 4:1733CrossRefGoogle Scholar
  41. Moré MI, Herrick JB, Silva MC, Ghiorse WC, Madsen EL (1994) Quantitative cell lysis of indigenous microorganisms and rapid extraction of microbial DNA from sediment. Appl Environ Microbiol 60(5):1572–1580PubMedPubMedCentralGoogle Scholar
  42. Nancharaiah YV, Mohan SV, Lens PNL (2016) Biological and bioelectrochemical recovery of critical and scarce metals. Trends Biotechnol 34(2):137–155CrossRefPubMedGoogle Scholar
  43. National Research Council (2014) Review of EPA’s integrated risk information system (IRIS) process. National Academies Press, Washington, DCGoogle Scholar
  44. Nelson DM, Ohene-Adjei S, Hu FS, Cann IKO, Mackie RI (2007) Bacterial diversity and distribution in the holocene sediments of a northern temperate lake. Microbial Ecol 54(2):252–263CrossRefGoogle Scholar
  45. Obeng EM, Adam SNN, Budiman C, Ongkudon CM, Maas R, Jose J (2017) Lignocellulases: a review of emerging and developing enzymes, systems, and practices. Bioresour Bioprocess 4(1):16CrossRefGoogle Scholar
  46. Ozer A, Ozer D (2003) Comparative study of the biosorption of Pb(II), Ni(II) and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. J Hazard Mater 100:219–229CrossRefPubMedGoogle Scholar
  47. Parro V, Moreno-Paz M, Gonzalez-Toril E (2007) Analysis of environmental transcriptomes by DNA microarrays. Environ Microbiol 9:453–464CrossRefPubMedGoogle Scholar
  48. Poretsky RS, Bano N, Buchan A, Lecleir G, Kleikemper J, Pickering M, Pate WM, Moran MA, Hollibaugh JT (2005) Analysis of microbial gene transcripts in environmental samples. Appl Environ Microbiol 71:4121–4126CrossRefPubMedPubMedCentralGoogle Scholar
  49. Qiu J, Guo Z, Liu H, Zhou D, Han Y, Yang R (2008) DNA microarray-based global transcriptional profiling of Yersinia pestis in multicellularity. J Microbiol 46:557–563CrossRefPubMedGoogle Scholar
  50. Rineau F, Roth D, Shah F, Smits M, Johansson T, Canbäck B, Grigoriev IV (2012) The ectomycorrhizal fungus Paxillus involutus converts organic matter in plant litter using a trimmed brown-rot mechanism involving Fenton chemistry. Environ Microbiol 14(6):1477–1487CrossRefPubMedPubMedCentralGoogle Scholar
  51. Rodrigues EM, Kalks KH, Fernandes PL, Tótola MR (2015) Bioremediation strategies of hydrocarbons and microbial diversity in the Trindade Island shoreline. Mar Pollut Bull 101(2):517–525CrossRefPubMedGoogle Scholar
  52. Romanelli AM, Fu J, Herrera ML, Wickes BL (2014) A universal DNA extraction and PCR amplification method for fungal rDNA sequence-based identification. Mycoses 57(10):612–622CrossRefPubMedGoogle Scholar
  53. Ruta LL, Kissen R, Nicolau I, Neagoe AD, Petrescu AJ, Bones AM, Farcasanu IC (2017) Heavy metal accumulation by Saccharomyces cerevisiae cells armed with metal binding hexapeptides targeted to the inner face of the plasma membrane. Appl Microbiol Biotechnol 101(14):5749–5763CrossRefPubMedGoogle Scholar
  54. Saǧ Y, Özer D, Kutsal T (1995) A comparative study of the biosorption of lead(II) ions to Z. ramigera and R. arrhizus. Process Biochem 30:169–174CrossRefGoogle Scholar
  55. Sankaran S, Khanal SK, Jasti N, Jin B, Pometto AL, Van Leeuwen JH (2010) Use of filamentous fungi for wastewater treatment and production of high value fungal byproducts: a review. Crit Rev Environ Sci Technol 40(5):400–449CrossRefGoogle Scholar
  56. Sato S, Feltus FA, Iyer P, Tien M (2009) The first genome-level transcriptome of the wood-degrading fungus Phanerochaete chrysosporium grown on red oak. Curr Genet 55(3):273–286CrossRefPubMedGoogle Scholar
  57. Soares EV, Soares HM (2012) Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environ Sci Pollut R 19(4):1066–1083CrossRefGoogle Scholar
  58. Thorsen M, Lagniel G, Kristiansson E, Junot C, Nerman O, Labarre J, Tamás MJ (2007) Quantitative transcriptome, proteome, and sulfur metabolite profiling of the Saccharomyces cerevisiae response to arsenite. Physiol Genomics 30(1):35–43CrossRefPubMedGoogle Scholar
  59. Tortella GR, Diez MC, Durán N (2005) Fungal diversity and use in decomposition of environmental pollutants. Crit Rev Microbiol 31(4):197–212CrossRefPubMedGoogle Scholar
  60. Urich T, Lanzen A, Qi J, Huson DH, Schleper C, Schuster FSC (2008) Simultaneous assessment of soil microbial community structure and function through analysis of the meta-transcriptome. PLoS One 3:2527CrossRefGoogle Scholar
  61. Vats A, Mishra S (2018) Identification and evaluation of bioremediation potential of laccase isoforms produced by Cyathus bulleri on wheat bran. J Hazard Mater 344:466–479CrossRefPubMedGoogle Scholar
  62. Verma S, Verma PK, Meher AK, Dwivedi S, Bansiwal AK, Pande V, Chakrabarty D (2016) A novel arsenic methyltransferase gene of Westerdykella aurantiaca isolated from arsenic contaminated soil: phylogenetic, physiological, and biochemical studies and its role in arsenic bioremediation. Metallomics 8(3):344–353CrossRefPubMedGoogle Scholar
  63. Warnecke F, Hess M (2009) A perspective: metatranscriptomics as a tool for the discovery of novel biocatalysts. J Biotechnol 142(1):91–95CrossRefPubMedGoogle Scholar
  64. Warnecke F, Luginbühl P, Ivanova N, Ghassemian M, Richardson TH, Stege JT, Cayouette M, Mchardy AC, Djordjevic G, Aboushadi N, Sorek R, Tringe SG, Podar M, Garcia-Martin H, Kunin V, Dalevi D, Madejska J, Kirton E, Platt D, Szeto E, Salamov A, Barry K, Mikhailova N, Kyrpides NC, Matson EG, Ottesen EA, Zhang X, Hernández M, Murillo C, Acosta LG, Rigoutsos I, Tamayo G, Green BD, Chang C, Rubin EM, Mathur EJ, Robertson DE, Hugenholtz P, Leadbetter JR (2007) Metagenomic and functional analysis of hindgut microbiota of a wood-feeding higher termite. Nature 450:560–565CrossRefGoogle Scholar
  65. Whitby C (2010) Microbial naphthenic acid degradation. Adv Appl Microbiol 70:93–125CrossRefPubMedGoogle Scholar
  66. Wintzingerode FV, Göbel UB, Stackebrandt E (1997) Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol Rev 21(3):213–229CrossRefGoogle Scholar
  67. World Health Organization (2004) Guidelines for drinking-water quality: recommendations, vol 1. World Health Organization, GenevaGoogle Scholar
  68. Wymelenberg AV, Gaskell J, Mozuch M, Sabat G, Ralph J, Skyba O, Kersten PJ (2010) Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium. Appl Environ Microbiol 76(11):3599–3610CrossRefGoogle Scholar
  69. You Y, Fu C, Zeng X, Fang D, Yan X, Sun B, Xiao D, Zhang J (2008) A novel DNA microarray for rapid diagnosis of enteropathogenic bacteria in stool specimens of patients with diarrhea. J Microbiol Methods 75:566–571CrossRefPubMedGoogle Scholar
  70. Zhang T, Tang J, Sun J, Yu C, Liu Z, Chen J (2015) Hex1-related transcriptome of Trichoderma atroviride reveals expression patterns of ABC transporters associated with tolerance to dichlorvos. Biotechnol Lett 37(7):1421–1429CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Alejandro Ledezma-Villanueva
    • 1
  • José Manuel Adame-Rodríguez
    • 1
  • Elva T. Aréchiga-Carvajal
    • 1
  1. 1.Unidad de Manipulación Genética, Laboratorio de Micología y Fitopatología, Departamento de Microbiología, Facultad de Ciencias BiológicasUniversidad Autónoma de Nuevo León, Cd. UniversitariaSan Nicolás de los GarzaMexico

Personalised recommendations