Advertisement

Fungal Nanoparticles Formed in Saline Environments Are Conducive to Soil Health and Remediation

  • Yi Wei
  • Li-Na Chen
  • Zi-Yu Zhang
  • Chi Zhu
  • Shi-Hong Zhang
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

Sodium salt-affected, heavy metal-contaminated, chemical fertilizer-overused, and other hazardous constituents-caused poor quality soils are collectively called unhealthy soils. These unhealthy soils ultimately result in yield reduction, quality decline, and loss of income for farmers. The saline environment-derived fungi have the ability to resist or tolerate certain high concentrations of salts no matter how halotolerant or halophilic they are. And several mechanisms to alleviate the damages of salt, heavy metal, or other hazardous chemicals have been reported in the halotolerant or halophilic fungi. Among these mechanisms, nanoparticle-mediated bioremediation is proposed to be important. These nanoparticles are formed from the reductive products of soil metal cations or from fungal-secreted metabolites, enzymes, or hydrolysates that are beneficial to soil physical properties, fertility, activity, and health. This chapter will focus on the following aspects: identification of halotolerant or halophilic fungi, nanoparticles synthesized by halotolerant or halophilic fungi, mycoremediation, and health maintenance for saline-affected soils. The current advances of nanoparticle-mediated technology in soil health improvement are also discussed.

Keywords

Saline environment-derived fungi Nanoparticles Enzymes Soil mycoremediation 

Notes

Acknowledgments

The related work in our lab was partially supported by grants from the National Natural Science Foundation of China (grant nos. 31671972 and 31670141) and a project of the Ministry of Science and Technology of China (grant no. 2016YFD0300703). The authors would like to thank the Zhang Lab members, who provided the photographic pictures taken at their spare time. The authors are also grateful to former labmates Dr. Zheng-Qun LI, Dr. Yang SHI, Mr. Sen-Lin ZHANG, and Zhi-Yuan GONG (visiting research fellow from the Northeast Forestry University, Harbin), who contributed to fungal isolation and field trials, as well as to collaborators Zhen-Dong CHEN and Run-Zhi TAO who provided encouragement and assistance in promoting our scientific and technological achievements regarding saline-alkaline soil mycoremediation using haloalkaliphilic fungi.

References

  1. Aggangan NS, Moon HK, Han SH (2010) Growth response of Acacia mangium wild seedlings to arbuscular mycorrhizal fungi and four isolates of the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker and Couch. New For 39:215–230CrossRefGoogle Scholar
  2. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra−/intracellular biosynthesis of gold nanoparticles by an alkalitolerant fungus Trichothecium sp. J Biomed Nanotechnol 1:47–53CrossRefGoogle Scholar
  3. Alani F, Moo-Young M, Anderson W (2012) Biosynthesis of silver nanoparticles by a new strain of Streptomyces sp. compared with Aspergillus fumigatus. World J Microbiol Biotechnol 28:1081–1086PubMedCrossRefPubMedCentralGoogle Scholar
  4. Antony CP, Kumaresan D, Hunger S, Drake HL, Murrell JC, Shouche YS (2013) Microbiology of Lonar Lake and other soda lakes. ISME J 7:468–476. https://doi.org/10.1038/ismej.2012.137CrossRefPubMedPubMedCentralGoogle Scholar
  5. Apte SK, Thomas J (1997) Possible amelioration of coastal soil salinity using halotolerant nitrogen-fixing cyanobacteria. Plant Soil 189:205–211CrossRefGoogle Scholar
  6. Arakaki R, Monteiro D, Boscolo R, Gomes E (2013) Halotolerance, ligninase production and herbicide degradation ability of basidiomycetes strains. Braz J Microbiol 44:1207–1214PubMedCrossRefPubMedCentralGoogle Scholar
  7. Aslantas R, Cakmakci R, Sahin F (2007) Effect of plant growth promoting rhizobacteria on young apple tree growth and fruit yield under orchard conditions. Sci Hortic 111:371–377CrossRefGoogle Scholar
  8. Asmathunisha N, Kathiresan K (2013) A review on biosynthesis of nanoparticles by marine organisms. Coll Surf B Biointerfaces 103:283–287. https://doi.org/10.1016/j.colsurfb.2012.10.030CrossRefGoogle Scholar
  9. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. https://doi.org/10.3389/fmicb.2016.01984
  10. Barnes SJ, Weitzman PD (1986) Organization of citric acid cycle enzymes into a multienzyme cluster. FEBS0 Lett 201:267–270Google Scholar
  11. Basavaraja S, Balaji SD, Lagashetty A, Rajasab AH, Venkataraman A (2007) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium semitectum. Mater Res Bull 43:1164–1170CrossRefGoogle Scholar
  12. Batista-García RA, Balcázar-López E, Miranda-Miranda E, Sánchez-Reyes A, Cuervo-Soto L, Aceves-Zamudio D, Atriztán-Hernández K, Morales-Herrera C, Rodríguez-Hernández R, Folch-Mallol J (2014) Characterization of lignocellulolytic activities from a moderate halophile strain of Aspergillus caesiellus isolated from a sugarcane bagasse fermentation. PLoS One 9(8):e105893. https://doi.org/10.1371/journal.pone.0105893CrossRefPubMedPubMedCentralGoogle Scholar
  13. Béguin P, Aubert JP (1994) The biological degradation of cellulose. FEMS Microbiol Rev 13:25–58PubMedCrossRefPubMedCentralGoogle Scholar
  14. Birla SS, Tiwari VV, Gade AK, Ingle AP, Yadav AP, Rai MK (2009) Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol 48:173–179PubMedCrossRefPubMedCentralGoogle Scholar
  15. Blaudez D, Botton B, Chalot M (2000) Cadmium uptake and subcellular compartmentation in the ectomycorrhizal fungus Paxillus involutus. Microbiology 146:1109–1117PubMedCrossRefPubMedCentralGoogle Scholar
  16. Bruggen AHCV, Semenov AM, Zeiss MR (2000) In search of biological indicators for soil health and disease suppression. Appl Soil Ecol 15:13–24CrossRefGoogle Scholar
  17. Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP (1998) Fungal life in the extremely hypersaline water of the Dead Sea: first records. Proc R Soc Lond B 265:1461–1465CrossRefGoogle Scholar
  18. Buchalo AS, Nevo E, Wasser SP, Oren A, Molitoris HP, Volz PA (2000) Fungi discovered in the Dead Sea. Mycol Res News 104:132–133Google Scholar
  19. Butinar L, Sonjak S, Zalar P, Plemenitaš A, Gunde-Cimerman N (2005a) Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot Mar 48:73–79CrossRefGoogle Scholar
  20. Butinar L, Zalar P, Frisvad JC, Gunde-Cimerman N (2005b) The genus Eurotium–members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol Ecol 51:155–166PubMedCrossRefPubMedCentralGoogle Scholar
  21. Casadevall A (2012) Fungi and the rise of mammals. PLoS Pathog 8(8):e1002808. https://doi.org/10.1371/journalCrossRefPubMedPubMedCentralGoogle Scholar
  22. Casamayor EO, Massana R, Benlloch S, Øvreas L, Diez B, Goddard VJ, Gasol JM, Joint I, Rodríguez-Valera F, Pedrós-Alió C (2002) Changes in archaeal, bacterial and eukaryal assemblages along a salinity gradient by comparison of genetic fingerprinting methods in a multipond solar saltern. Environ Microbiol 4:338–348PubMedCrossRefPubMedCentralGoogle Scholar
  23. Castillo G, Demoulin V (1997) NaCl salinity and temperature effects on growth of three wood–rotting basidiomycetes from a Papua New Guinea coastal forest. Mycol Res 101:341–344CrossRefGoogle Scholar
  24. Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp. 32883 with silver nitrate. Lett Appl Microbiol 37:105–108PubMedCrossRefPubMedCentralGoogle Scholar
  25. Dendooven L, Alcántara-Hernández RJ, Valenzuela-Encinas C, Luna-Guido ML, Perez-Guevara F, Marsch R (2010) Dynamics of carbon and nitrogen in an extreme alkaline saline soil: a review. Soil Biol Biochem 42:865–877CrossRefGoogle Scholar
  26. Devi LS, Joshi SR (2015) Ultrastructures of silver nanoparticles biosynthesized using endophytic fungi. J Microsc Ultrastruct 3:29–37PubMedCrossRefPubMedCentralGoogle Scholar
  27. Dhanasekar NN, Rahul G, Narayanan KB, Raman G, Sakthivel N (2015) Green chemistry approach for the synthesis of gold nanoparticles using the fungus Alternaria sp. J Microbiol Biotechnol. https://doi.org/10.4014/jmb.1410.10036
  28. Durán N, Marcato PD, Alves OL, Souza GI, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nanobiotechnol 3:1–8. https://doi.org/10.1186/1477-3155-3-8
  29. Elmeleigy MA, Hoseiny EN, Ahmed SA, Alhoseiny AM (2010) Isolation, identification, morphogenesis and ultrastructure of obligate halophilic fungi. J Appl Sci Environ Sanit 5:201–202Google Scholar
  30. Evans S, Hansen RW, Schneegurt MA (2013) Isolation and characterization of halotolerant soil fungi from the great salt plains of Oklahoma. Cryptogam Mycol 34:329–341. https://doi.org/10.7872/crym.v34.iss4.2013.329CrossRefPubMedPubMedCentralGoogle Scholar
  31. Fang J, Han X, Xie L, Liu M, Qiao G, Jiang J, Zhuo R (2014) Isolation of salt stress–related genes from Aspergillus glaucus CCHA by random overexpression in Escherichia coli. Sci World J 39:620959Google Scholar
  32. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2009) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomedicine 6:103–109PubMedCrossRefGoogle Scholar
  33. Ford GW, Martin JJ, Rengasamy P, Boucher SC, Ellington A (1993) Soil sodicity in Victoria. Aust J Soil Res 31:869–909CrossRefGoogle Scholar
  34. Gade AK, Bonde P, Ingle AP, Marcato PD, Durán N, Rai MK (2008) Exploitation of Aspergillus niger for synthesis of silver nanoparticles. J Biobased Mater Bioenerg 2:243–247CrossRefGoogle Scholar
  35. Gao Q, Yang XS, Yun R, Li CP (1996) MAGE, a dynamic model of alkaline grassland ecosystems with variable soil characteristics. Ecol Model 93:19–32CrossRefGoogle Scholar
  36. Gericke M, Pinches A (2006) Microbial production of gold nanoparticles. Gold Bull 39:22–28CrossRefGoogle Scholar
  37. Ghaly FM (2002) Role of natural vegetation in improving salt affected soil in northern Egypt. Soil Tillage Res 64:173–178CrossRefGoogle Scholar
  38. Gharaibeh MA, Eltaif NI, Shunnar OF (2009) Leaching and reclamation of calcareous saline–sodic soil by moderately saline and moderate-SAR water using gypsum and calcium chloride. J Plant Nutr Soil Sci 172:713–719CrossRefGoogle Scholar
  39. Ghassemi F, Jakeman AJ, Nix HA (1995) Salinisation of land and water resources: human causes, extent, management and case studies. CABI Publishing, WallingfordGoogle Scholar
  40. Gholami-Shabani M, Akbarzadeh A, Mortazavi M, Emzadeh MK (2013) Evaluation of the antibacterial properties of silver nanoparticles synthesized with Fusarium oxysporum and Escherichia coli. Int J Life Sci Biotechnol Pharma Res 2:333–348Google Scholar
  41. Gholami-Shabani M, Akbarzadeh A, Norouzian D, Amini A, Gholami-Shabani Z, Imani A, Chiani M, Riazi G, Shams-Ghahfarokhi M, Razzaghi-Abyaneh M (2014) Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Appl Biochem Biotechnol 172:4084–4098. https://doi.org/10.1007/s12010-014-0809-2CrossRefPubMedPubMedCentralGoogle Scholar
  42. Gomes ECQ, Godinho VM, Silva DAS, de Paula MTR, Vitoreli GA, Zani CL, Alves TMA, Junior PAS, Murta SMF, Barbosa EC, Oliveira JG, Oliveira FS, Carvalho CR, Ferreira MC, Rosa CA, Rosa LH (2018) Cultivable fungi present in Antarctic soils: taxonomy, phylogeny, diversity, and bioprospecting of antiparasitic and herbicidal metabolites. Extremophiles. https://doi.org/10.1007/s00792-018-1003-1
  43. Gonçalves VN, Vitoreli GA, de Menezes GCA, Mendes CRB, Secchi ER, Rosa CA, Rosa LH (2017) Taxonomy, phylogeny and ecology of cultivable fungi present in seawater gradients across the Northern Antarctica Peninsula. Extremophiles 21:1005. https://doi.org/10.1007/s00792-017-0959-6CrossRefPubMedPubMedCentralGoogle Scholar
  44. Gostinčar C, Turk M (2012) Extremotolerant fungi as genetic resources for biotechnology. Bioengineered 3:293–297PubMedCrossRefPubMedCentralGoogle Scholar
  45. Gostinčar C, Grube M, De Hoog S, Zalar P, Gunde-Cimerman N (2010) Extremotolerance in fungi: evolution on the edge. FEMS Microbiol Ecol 71:2–11PubMedCrossRefGoogle Scholar
  46. Grum-Grzhimaylo AA, Georgieva ML, Bondarenko SA, Debets AJM, Bilanenko EN (2016) On the diversity of fungi from soda soils. Fungal Divers 76:27–74CrossRefGoogle Scholar
  47. Gunde-Cimerman N, Zalar P (2014) Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol Biotechnol 52:170–179Google Scholar
  48. Gunde-Cimerman N, Zalar P, de Hoog GS, Plemenitaš A (2000) Hypersaline waters in salterns: natural ecological niches for halophilic black yeasts. FEMS Microbiol Ecol 32:235–240Google Scholar
  49. Häkkinen M, Valkonen MJ, Westerholm-Parvinen A, Aro N, Arvas M, Vitikainen M, Penttilä M, Saloheimo M, Pakula TM (2014) Screening of candidate regulators for cellulase and hemicellulose production in Trichoderma reesei and identification of a factor essential for cellulase production. Biotechnol Biofuels 7(14):1–21Google Scholar
  50. Harner T, Wideman JL, Jantunen LM, Bidleman TF, Parkhurst WJ (1999) Residues of organochlorine pesticides in Alabama soils. Environ Pollut 106(3):323–332PubMedCrossRefPubMedCentralGoogle Scholar
  51. Heckman DS, Geiser DM, Eidell BR, Stauffer RL, Kardos NL, Hedges SB (2001) Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129–1133PubMedCrossRefPubMedCentralGoogle Scholar
  52. Horikosh K (1999) Alkaliphiles: some applications of their products for biotechnology. Microbiol Mol Biol Rev 63:735–750Google Scholar
  53. Horodyski RJ, Knauth PL (1994) Life on land in the Precambrian. Science 263(5146):494–498PubMedCrossRefPubMedCentralGoogle Scholar
  54. Hozzein WN, Ali MIA, Ahmed MS (2013) Antimicrobial activities of some alkaliphilic and alkaline-resistant microorganisms isolated from Wadi Araba, the eastern desert of Egypt. Life Sci J 10:1823–1828Google Scholar
  55. Huang J, Lin L, Sun D, Chen H, Yang D, Li Q (2015) Bio-inspired synthesis of metal nanoparticles and application. Chem Soc Rev 44:6330–6374PubMedCrossRefPubMedCentralGoogle Scholar
  56. Ibrahim Z, Ahmad A, Baba B (2001) Bioaccumulation of silver and the isolation of metal-binding protein from Pseudomonas diminuta. Braz Arch Biol Tech 44:223–225CrossRefGoogle Scholar
  57. Ilyas M, Miller RW, Qureshi RH (1993) Hydraulic conductivity of saline-sodic soil after gypsum application and cropping. Soil Sci Soc Am J 57:1580–1585CrossRefGoogle Scholar
  58. Ingle A, Gade A, Pierrat S, Sonnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144CrossRefGoogle Scholar
  59. Ingle A, Rai MK, Gade A, Bawaskar M (2009) Fusarium solani: a novel biological agent for the extracellular synthesis of silver nanoparticles. J Nanopart Res 11:2079–2085CrossRefGoogle Scholar
  60. Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3:635–641PubMedCrossRefPubMedCentralGoogle Scholar
  61. Karlen DL, Andrews SS, Wienhold BJ, Zobeck TM (2008) Soil quality assessment: past, present and future. J Integr Biosci 6:3–14Google Scholar
  62. Kis-Papo T, Grishkan I, Oren A, Wasser SP, Nevo E (2003) Survival of filamentous fungi in hypersaline Dead Sea water. Microb Ecol 45:183–190PubMedCrossRefPubMedCentralGoogle Scholar
  63. Kis-Papo T, Weig AR, Riley R, Peršoh D, Salamov A, Sun H, Lipzen A, Wasser SP, Rambold G, Grigoriev IV, Nevo E (2014) Genomic adaptations of the halophilic Dead Sea filamentous fungus Eurotium rubrum. Nat Commun 5:3745. https://doi.org/10.1038/ncomms4745CrossRefPubMedPubMedCentralGoogle Scholar
  64. Kogej T, Ramos J, Plemenitas A, Gunde-Cimerman N (2005) The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl Environ Microbiol 71:6600–6605PubMedCrossRefPubMedCentralGoogle Scholar
  65. Kowshik M, Ashtaputre S, Kharrazi S, Vogel W, Urban J, Kulkarni SK, Paknikar M (2003) Extracellular synthesis of silver nanoparticles by a silver-tolerant yeast strain MKY3. Nanotechnology 14:95–100CrossRefGoogle Scholar
  66. Kumar AS, Ansari AA, Ahmad A, Khan MI (2007a) Extracellular biosynthesis of CdS quantum dots by the fungus Fusarium oxysporum. J Biomed Nanotechnol 3:190–194CrossRefGoogle Scholar
  67. Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Ahmad A, Khan MI (2007b) Sulfite reductase mediated synthesis of gold nanoparticles capped with phytochelatin. Biotechnol Appl Biochem 47:191–195. https://doi.org/10.1042/BA20060205CrossRefPubMedPubMedCentralGoogle Scholar
  68. Kumar SA, Abyaneh MK, Gosavi SW, Kulkarni SK, Pasricha R, Ahmad A, Khan MI (2007c) Nitrate reductase-mediated synthesis of silver nanoparticles from AgNO3. Biotechnol Lett 29:439–445CrossRefGoogle Scholar
  69. Li CH, Wang HR, Yan TR (2012a) Cloning, purification, and characterization of a heat– and alkaline–stable endoglucanase B from Aspergillus niger BCRC31494. Molecules 17:9774–9789PubMedCrossRefPubMedCentralGoogle Scholar
  70. Li G, He D, Qian Y, Guan B, Gao S, Cui Y, Yokoyama K, Wang L (2012b) Fungus mediated green synthesis of silver nanoparticles using Aspergillus terreus. Int J Mol Sci 13:466–476PubMedCrossRefPubMedCentralGoogle Scholar
  71. Li ZQ, Pei X, Zhang ZY, Wei Y, Song YY, Chen LN, Liu SA, Zhang S-H (2018) The unique GH5 cellulase member in the extreme halotolerant fungus Aspergillus glaucus CCHA is an endoglucanase with multiple tolerances to salt, alkali and heat: prospects for straw degradation applications. Extremophiles. https://doi.org/10.1007/s00792-018-1028-5
  72. Liang X, Liu Y, Xie L, Liu X, Wei Y, Zhou X, Zhang SH (2015) A ribosomal protein AgRPS3aE from halophilic Aspergillus glaucus confers salt tolerance in heterologous organisms. Int J Mol Sci 16:3058–3070PubMedCrossRefPubMedCentralGoogle Scholar
  73. Liu XD (2014) Two stress tolerance genes in halophilic Aspergillus: functional analysis and their application. Dissertation, Jilin University (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CDFD&dbname=CDFDTEMP&filename=1015507655.nh
  74. Liu CX, Huang WY (2010) Influence of saline-alkali -tolerant bacteria combined with organic matter on formation of saline-alkali soil aggregates. Soils 42(1):111–116 (in Chinese, abstract in English)Google Scholar
  75. Liu XD, Liu JL, Wei Y, Tian YP, Fan FF, Pan HY, Zhang SH (2011) Isolation, identification and biologic characteristics of an extreme halotolerant Aspergillus sp. J Jilin Univ 49:548–552 (In Chinese; abstract in English)Google Scholar
  76. Liu G, Qin Y, Hu Y, Gao M, Peng S, Qu Y (2013) An endo–1,4–β–glucanase PdCel5C from cellulolytic fungus Penicillium decumbens with distinctive domain composition and hydrolysis product profile. Enzym Microb Technol 52:190–195CrossRefGoogle Scholar
  77. Liu XD, Xie L, Wei Y, Zhou XY, Jia B, Liu J, Zhang SH (2014) Abiotic stress resistance, a novel moonlighting function of ribosomal protein RPL44 in the halophilic fungus Aspergillus glaucus. Appl Environ Microbiol 80:4294–4300PubMedCrossRefPubMedCentralGoogle Scholar
  78. Liu XD, Wei Y, Zhou XY, Pei X, Zhang SH (2015) Aspergillus glaucus aquaglyceroporin gene glpF confers high osmosis tolerance in heterologous organisms. Appl Environ Microbiol 81:6926–6937PubMedCrossRefPubMedCentralGoogle Scholar
  79. Mahdy HM, el-Sheikh HH, Ahmed MS, Refaat BM (1996) Physiological and biochemical changes induced by osmolarity in halotolerant aspergilli. Acta Microbiol Pol 45:55–65PubMedPubMedCentralGoogle Scholar
  80. Mandeel QA (2006) Biodiversity of the genus Fusarium in saline soil habitats. J Basic Microbiol 46:480–494PubMedCrossRefPubMedCentralGoogle Scholar
  81. Melero S, Madejon E, Ruiz JC, Herencia JF (2007) Chemical and biochemical properties of a clay soil under dryland agriculture system as affected by organic fertilization. Eur J Agron 26:327–334CrossRefGoogle Scholar
  82. Mernitz G, Koch A, Henrissat B, Schulz G (1996) Endoglucanase II (EGII) of Penicillium janthinellum: cDNA sequence, heterologous expression and promoter analysis. Curr Genet 29:490–495PubMedCrossRefPubMedCentralGoogle Scholar
  83. Moazeni M, Rashidi N, Shahverdi AR, Noorbakhsh F, Rezaie S (2011) Extracellular production of silver nanoparticles by using three common species of dermatophytes: Trichophyton rubrum, Trichophyton mentagrophytes and Microsporum canis. Iran Biomed J 16(1):332–333Google Scholar
  84. Mohite P, Kumar AR, Zinjarde S (2017) Relationship between salt tolerance and nanoparticle synthesis by Williopsis saturnus NCIM 3298. World J Microbiol Biotechnol 33:163. https://doi.org/10.1007/s11274-017-2329-zCrossRefPubMedPubMedCentralGoogle Scholar
  85. Moubasher A, Abdel-Hafez S, Bagy M, Abdel-Satar M (1990) Halophilic and halotolerant fungi in cultivated desert and salt marsh soils from Egypt. Acta Mycol 26:65–81CrossRefGoogle Scholar
  86. Mourato A, Gadanho M, Lino AR, Tenreiro R (2011) Biosynthesis of crystalline silver and gold nanoparticles by extremophilic yeasts. Bioinorg Chem Appl 2011:546074. https://doi.org/10.1155/2011/546074CrossRefPubMedPubMedCentralGoogle Scholar
  87. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl4 – ions by the fungus Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588CrossRefGoogle Scholar
  88. Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008) Green synthesis of highly stabilized nanocrystalline silver particles by a nonpathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:103–110Google Scholar
  89. Mulder JL, El-Hendawy H (1999) Microfungi under stress in Kuwait’s coastal saline depressions. Kuwait J Sci Eng 26:157–172Google Scholar
  90. Mulder JL, Ghannoum MA, Khamis L, Elteen KA (1989) Growth and lipid composition of some dematiaceous hyphomycete fungi grown at different salinities. Microbiology 135:3393–3404CrossRefGoogle Scholar
  91. Namasivayam SKR, Ganesh S, Avimanyu S (2011) Evaluation of anti-bacterial activity of silver nanoparticles synthesized from Candida glabrata and Fusarium oxysporum. Int J Med Microbiol Res 1:130–136Google Scholar
  92. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interf Sci 156:1–13CrossRefGoogle Scholar
  93. Nazareth S, Gonsalves V (2014) Aspergillus penicillioides – a true halophile existing in hypersaline and polyhaline econiches. Ann Microbiol 64:397–402CrossRefGoogle Scholar
  94. Nazareth S, Gonsalves V, Nayak S (2012) A first record of obligate halophilic aspergilli from the Dead Sea. Indian J Microbiol 52:22–27PubMedCrossRefPubMedCentralGoogle Scholar
  95. Nouri H, Borujeni CS, Nirola R, Hassanli A, Beecham S, Alaghmand S, Saint C, Mulcahy D (2017) Application of green remediation on soil salinity treatment: a review on halophytoremediation. Process Saf Environ 107:94–107CrossRefGoogle Scholar
  96. Oad FC, Samo MA, Soomro A, Oad DL, Oad NL, Siyal AG (2002) Amelioration of salt affected soils. Pak J Appl Sci 2:1–9CrossRefGoogle Scholar
  97. Ohno T, Inoue M, Ogihara Y (2001) Cytotoxic activity of gallic acid against liver metastasis of mastocytoma cells P-815. Anticancer Res 21(6A):3875–3880PubMedPubMedCentralGoogle Scholar
  98. Oo AN, Iwai CB, Saenjan P (2015) Soil properties and maize growth in saline and nonsaline soils using cassava–industrial waste compost and vermicompost with or without earthworms. Land Degrad Dev 26: 300-310Google Scholar
  99. Pavani KV, Kumar NS, Sangameswaran BB (2012) Synthesis of lead nanoparticles by Aspergillus species. Pol J Microbiol 61:61–63PubMedPubMedCentralGoogle Scholar
  100. Peng XP, Wang Y, Liu PP, Hong K, Chen H, Yin X, Zhu WM (2011a) Aromatic compounds from the halotolerant fungal strain of Wallemia sebi PXP-89 in a hypersaline medium. Arch Pharm Res 34:907–912PubMedCrossRefPubMedCentralGoogle Scholar
  101. Peng XP, Wang Y, Sun K, Liu PP, Yin X, Zhu WM (2011b) Cerebrosides and 2-pyridone alkaloids from the halotolerant fungus Penicillium chrysogenum grown in a hypersaline medium. J Nat Prod 74:1298–1302PubMedCrossRefPubMedCentralGoogle Scholar
  102. Piñar G, Dalnodar D, Voitl C, Reschreiter H, Sterflinger K (2016) Biodeterioration risk threatens the 3100 year old staircase of hallstatt (Austria): possible involvement of halophilic microorganisms. PLoS One 11(2):e0148279. https://doi.org/10.1371/journal.pone.0148279CrossRefPubMedPubMedCentralGoogle Scholar
  103. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  104. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. https://doi.org/10.1002/wnan.1363
  105. Qadir M, Oster JD, Schubert S, Noble AD, Sahrawat KL (2007) Phytoremediation of sodic and saline-sodic soils. Adv Agron 96:197–247CrossRefGoogle Scholar
  106. Qin Y, Wei X, Song X, Qu Y (2008) Engineering endoglucanase II from Trichoderma reesei to improve the catalytic efficiency at a higher pH optimum. J Biotechnol 135:190–195PubMedCrossRefPubMedCentralGoogle Scholar
  107. Rady MM (2011) Effects on growth, yield, and fruit quality in tomato (Lycopersicon esculentum Mill.) using a mixture of potassium humate and farmyard manure as an alternative to mineral–N fertilizer. J Hortic Sci Biotechnol 86:249–254CrossRefGoogle Scholar
  108. Raheman F, Deshmukh S, Ingle A, Gade A, Rai M (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomed Eng 3:174–178CrossRefGoogle Scholar
  109. Rai M, Ribeiro C, Mattoso L, Duran N (2015) Nanotechnologies in food and agriculture. Springer, Germany. https://doi.org/10.1007/978-3-319-14024-7CrossRefGoogle Scholar
  110. Rajakumar G, Rahuman AA, Roopan SM, Khanna VG, Elango G, Kamaraj C, Velayutham K (2012) Fungus-mediated biosynthesis and characterization of TiO2 nanoparticles and their activity against pathogenic bacteria. Spectrochim Acta A Mol Biomol Spectrosc 91:23–29. https://doi.org/10.1016/j.saa.2012.01.011CrossRefPubMedPubMedCentralGoogle Scholar
  111. Richardson AE, Hadobas PA, Hayes JE, O’Hara CP, Simpson RJ (2001) Utilization of phosphorus by pasture plants supplied with myo-inositol hexaphosphate is enhanced by the presence of soil microorganisms. Plant Soil 229:47–56Google Scholar
  112. Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489PubMedCrossRefPubMedCentralGoogle Scholar
  113. Rietz DN, Haynes RJ (2003) Effects of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854CrossRefGoogle Scholar
  114. Sahin U, Eroğlum S, Sahin F (2011) Microbial application with gypsum increases the saturated hydraulic conductivity of saline–sodic soils. Appl Soil Ecol 48:247–250CrossRefGoogle Scholar
  115. Sanae F, Miyaichi Y, Hayashi H (2003) Endothelium-dependent contraction of rat thoracic aorta induced by gallic acid. Phytother Res 17(2):187PubMedCrossRefPubMedCentralGoogle Scholar
  116. Santos SX, Carvalho CC, Bonfa MR, Silva R, Gomes E (2004) Screening for pectinolytic activity of wood–rotting basidiomycetes and characterization of the enzymes. Folia Microbiol 49:46–52CrossRefGoogle Scholar
  117. Sardinha M, Müller T, Schmeisky H, Joergensen RG (2003) Microbial performance in soils along a salinity gradient under acidic conditions. Appl Soil Ecol 23:237–244CrossRefGoogle Scholar
  118. Sastry M, Ahmad A, Khan MI, Kumar R (2003) Biosynthesis of metal nanoparticles using fungi and actinomycetes. Curr Sci 85:162–170Google Scholar
  119. Satyamurthy P, Vigneshwaran N (2013) A novel process for synthesis of spherical nanocellulose by controlled hydrolysis of microcrystalline cellulose using anaerobic microbial consortium. Enzym Microb Technol 52(1):20–25CrossRefGoogle Scholar
  120. Satyamurthy P, Jain P, Balasubramanya RH, Vigneshwaran N (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr Polym 83(1):122–129CrossRefGoogle Scholar
  121. Scervino JM, Mesa MP, Della Mónica I, Recchi M, Moreno NS, Godeas A (2010) Soil fungal isolates produce different organic acid patterns involved in phosphate salts solubilization. Biol Fertil Soils 46:755–763CrossRefGoogle Scholar
  122. Schuster E, Dunn-Coleman N, Frisvad JC, van Dijck PW (2002) On the safety of Aspergillus niger– a review. Appl Microbiol Biotechnol 59:426–435PubMedCrossRefPubMedCentralGoogle Scholar
  123. Sheikhloo Z, Salouti M (2011) Intracellular biosynthesis of gold nanoparticles by the fungus Penicillium chrysogenum. Int J Nanosci Nanotechnol 7:102–105Google Scholar
  124. Shelar GB, Chavan AM (2014) Fungus–mediated biosynthesis of silver nanoparticles and its antibacterial activity. Arch App Sci Res 6:111–114Google Scholar
  125. Shi Y, Zhu J (2016) Saline-alkali soil improvement fertilizer and preparation method and use method thereof. Chinese Patent, CN 105237293 A (in Chinese). http://patentool.wanfangdata.com.cn/Patent/Details?id=CN201510597529.0
  126. Szabolcs I (1994) Soils and salinization. In: Pessarakli M (ed) Handbook of plant and crop stress, 1st edn. Marcel Dekker, New York, pp 3–11Google Scholar
  127. Tam PCF (1995) Heavy-metal tolerance by ectomycorrhizal fungi and metal amelioration by Pisolithus tinctorius. Mycorrhiza 5:181–187CrossRefGoogle Scholar
  128. Tamura M, Kawasaki H, Sugiyama J (1999) Identity of the xerophilic species Aspergillus penicillioides: integrated analysis of the genotypic and phenotypic. J Gen Appl Microbiol 45:29–37PubMedCrossRefPubMedCentralGoogle Scholar
  129. Taneja K, Gupta S, Kuhad RC (2002) Properties and application of a partially purified alkaline xylanase from an alkalophilic fungus Aspergillus nidulans KK-99. Bioresour Technol 85:39–42PubMedCrossRefPubMedCentralGoogle Scholar
  130. Tejada M, Garcia C, Gonzalez JL, Hernandez MT (2006) Use of organic amendment as a strategy for saline soil remediation: influence on the physical, chemical and biological properties of soil. Soil Biol Biochem 38:1413–1421CrossRefGoogle Scholar
  131. Tiquia-Arashiro SM, Rodrigues DF (2016) Extremophiles: applications in biotechnology. Springer briefs in microbiology: extremophilic microorganisms. Springer International Publishing. ISBN 978-3-319-45214-2, ISBN 978-3-319-45215-9 (eBook). https://doi.org/10.1007/978-3-319-45215-9
  132. Tomme P, Warren RAJ, Gilkes NR (1995) Cellulose hydrolysis by bacteria and fungi. Adv Microb Physiol 37:1–81PubMedCrossRefPubMedCentralGoogle Scholar
  133. Turan M, Ataoglu N, Sahin F (2006) Evaluation of the capacity of phosphate solubilizing bacteria and fungi on different forms of phosphorus in liquid culture. J Sustain Agric 28:99–108CrossRefGoogle Scholar
  134. Vahabi K, Mansoori GA, Karimi S (2011) Biosynthesis of silver nanoparticles by the fungus Trichoderma reesei. Insciences J 1:65–79CrossRefGoogle Scholar
  135. Vala AK, Shah S, Patel R (2014) Biogenesis of silver nanoparticles by marine derived fungus Aspergillus flavus from Bhavnagar coast, gulf of Khambat, India. J Mar Biol Oceanogr 3(1):1–3Google Scholar
  136. Verma VC, Kharwar RN, Gange AC (2010) Biosynthesis of antimicrobial silver nanoparticles by endophytic fungus Aspergillus clavatus. Biomedicine 5:33–40Google Scholar
  137. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14PubMedCrossRefPubMedCentralGoogle Scholar
  138. Wang T, Liu X, Yu Q, Zhang X, Qu Y, Gao P, Wang T (2005) Directed evolution for engineering pH profile of endoglucanase III from Trichoderma reesei. Biomol Eng 22:89–94PubMedCrossRefPubMedCentralGoogle Scholar
  139. Wang L, Seki K, Miyazaki T, Ishihama Y (2009) The causes of soil alkalinization in the Songnen Plain of Northeast China. Paddy Water Environ 7:259–270CrossRefGoogle Scholar
  140. Wang LL, Sun XY, Li SY, Zhang T, Zhang W, Zhai PH (2014) Application of organic amendments to a coastal saline soil in North China: effects on soil physical and chemical properties and tree growth. PLoS One 9(2):e89185. https://doi.org/10.1371/journal.pone.0089185CrossRefPubMedPubMedCentralGoogle Scholar
  141. Wei Y, Zhang SH (2018) Abiostress resistance and cellulose degradation abilities of haloalkaliphilic fungi: applications for saline-alkaline remediation. Extremophiles 22:155–164. https://doi.org/10.1007/s00792-017-0986-3CrossRefPubMedPubMedCentralGoogle Scholar
  142. Wei Y, Liu XD, Jia B, Zhang SH, Liu JL, Gao W (2013) Alkaline-tolerant and halophilic Aspergillus strain and application thereof in environmental management. Chinese Patent, CN 103436450 A (in Chinese). http://patentool.wanfangdata.com.cn/Patent/Details?id=CN201310162347.1
  143. Wichern J, Wichern F, Joergensen RG (2006) Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137:100–108CrossRefGoogle Scholar
  144. Xie LX (2013) Cloning and stress resistance analysis of ribosomal protein genes (SpRPS3ae and SpRPL44) in extreme halotolerant Aspergillus sp. Dissertation. Jilin University (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?dbcode=CMFD&dbname=CMFDTEMP&filename=1013196212.nh
  145. Xu ZH, Peng XP, Wang Y, Zhu WM (2011) (22E, 24R)-3ß,5α,9α-Trihydroxyergosta-7,22-dien-6-one monohydrate. Acta Cryst E67:o1141–o1142Google Scholar
  146. Yadav S, Irfan M, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol 32:667–685PubMedPubMedCentralGoogle Scholar
  147. Yan J, Song WN, Nevo E (2005) A MAPK gene from Dead Sea fungus confers stress tolerance to lithium salt and freezing–thawing: prospects for saline agriculture. Proc Natl Acad Sci U S A 102:18992–18997CrossRefGoogle Scholar
  148. Zajc J, Džeroski S, Kocev D, Oren A, Sonjak S, Tkavc R, Gunde-Cimerman N (2014a) Chaophilic or chaotolerant fungi: a new category of extremophiles? Front Microbiol 5:708-1–708-5. https://doi.org/10.3389/fmicb.2014.00708CrossRefGoogle Scholar
  149. Zajc J, Kogej T, Galinski EA, Ramos J, Gunde-Cimerman N (2014b) Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl Environ Microbiol 80(1):247–256. https://doi.org/10.1128/AEM.02702-13CrossRefPubMedPubMedCentralGoogle Scholar
  150. Zalar P, Kocuvan MA, Plemenitas A, Gunde-Cimerman N (2005) Halophilic black yeasts colonize wood immersed in hypersaline water. Bot Mar 48:323–326CrossRefGoogle Scholar
  151. Zhang SH (2016) The genetic basis of abiotic stress resistance in extremophilic fungi: the genes cloning and application. In: Purchase D (ed) Fungal applications in sustainable environmental biotechnology, 1st edn. Springer Press, pp 29–42. ISBN 978-3-319-42850-5. http://www.springer.com/gb/book/9783319428505#aboutBook
  152. Zhang X, Liu Y, Yan K, Wu H (2007) Decolorization of an anthraquinone–type dye by a bilirubin oxidase–producing nonligninolytic fungus Myrothecium sp. IMER1. J Biosci Bioeng 104:104–114PubMedCrossRefPubMedCentralGoogle Scholar
  153. Zhang SH, Li ZQ, Wei Y, Chen LN, Liu SS, Zhou XY, Song YY, Pei X (2016) Cellulase gene from extreme saline-alkali resistant Aspergillus and application. Chinese Patent, CN105420259A (in Chinese). http://patentool.wanfangdata.com.cn/Patent/Details?id=CN201610005024.5
  154. Zhou XY (2016)Cloning and abiotic functional analysis of salt-tolerant genes in Halophilic Aspergillus glaucus. Dissertation. Jilin University (in Chinese). http://kns.cnki.net/KCMS/detail/detail.aspx?filename=1016091320.nh&dbname=CMFDTEMP

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Yi Wei
    • 1
  • Li-Na Chen
    • 1
  • Zi-Yu Zhang
    • 1
  • Chi Zhu
    • 1
  • Shi-Hong Zhang
    • 1
  1. 1.College of Plant SciencesJilin UniversityChangchunPeople’s Republic of China

Personalised recommendations