Advertisement

Stepwise Strategies for the Bioremediation of Contaminated Soils: From the Microbial Isolation to the Final Application

  • Fabiana Lilian Martínez
  • Norma Beatriz Moraga
  • Neli Romano-Armada
  • María Florencia Yañez-Yazlle
  • Verónica Beatriz Rajal
  • Verónica Irazusta
Chapter
Part of the Nanotechnology in the Life Sciences book series (NALIS)

Abstract

In this chapter, we provide several tools and protocols that should be followed to develop successful research on soil bioremediation. We propose step-by-step guidance toward the study of a contaminated site as a possible target for bioremediation. Some tips regarding the selection of the target site are provided. General protocols and international standards on sampling were taken into account, to maintain the integrity of the samples and their correct management for the following treatments at the laboratory. Microbial isolation and their abilities for bioremediation vary according to the nature of the sample, and as a consequence different methodologies were proposed. Assays developed with culturable microorganisms to select those able to act on the contaminant of interest were also described. When the selection was completed, the analysis to establish the mechanisms involved in the interactions with the contaminants was described. Finally, we focused on the use of molecular biology approaches, such as proteomics and genetics, to evaluate how microorganisms reacted in the presence of the contaminant.

This chapter includes specific highlights on the main issues to take into account when starting research aiming toward soil bioremediation, so we expect it will be useful for researchers working on this topic.

Keywords

Soil Pollution Bioremediation Protocols and methods Microbial isolation 

References

  1. Achal V, Pan X, Fu Q, Zhang D (2012) Biomineralization based remediation of As (III) contaminated soil by Sporosarcina ginsengisoli. J Hazard Mater 201:178–184CrossRefGoogle Scholar
  2. Ahmad Khan MS, Singh B, Singh Cameotra S (2015) Biological applications of biosurfactants and strategies to potentiate commercial production. In: CRC press (ed) Biosurfactants: production and utilization: processes, technologies and economics, vol 159. Taylor & Francis Group, Boca RatonGoogle Scholar
  3. Amoozegar MA, Ghazanfari N, Didari M (2012) Lead and cadmium bioremoval by Halomonas sp, an exopolysaccharide-producing halophilic bacterium. Prog Biol Sci 2:1–11Google Scholar
  4. Bansal N, Kanwar SS (2013) Peroxidase(s) in environment protection. Sci World J 2013:714639CrossRefGoogle Scholar
  5. Bellion M, Courbot M, Jacob C, Blaudez D, Chalot M (2006) Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol Lett 254(2):173–181CrossRefGoogle Scholar
  6. Campos M, Perruchon C, Vasilieiadis S, Menkissoglu-Spiroudi U, Karpouzas DG, Diez MC (2015) Isolation and characterization of bacteria from acidic pristine soil environment able to transform iprodione and 3,5-dichloraniline. Int Biodeterior Biodegrad 104:201–211CrossRefGoogle Scholar
  7. Canstein H, Kelly S, Li Y, Wagner-Dobler I (2002) Species diversity improves the efficiency of mercury-reducing biofilms under changing environmental conditions. Appl Environ Microbiol 68:2829–2837CrossRefGoogle Scholar
  8. Carvalhais LC, Dennis PG, Tyson GW, Schenk PM (2012) Application of metatranscriptomics to soil environments. J Microbiol Methods 91(2):246–251CrossRefGoogle Scholar
  9. Castilla A, Panizza P, Rodríguez D, Bonino L, Díaz P, Irazoqui G, Rodríguez Giordano S (2017) A novel thermophilic and halophilic esterase from Janibacter sp. R02, the first member of a new lipase family (family XVII). Enzym Microb Technol 98:86–95. https://doi.org/10.1016/j.enzmictec.2016.12.010 CrossRefGoogle Scholar
  10. Chandra R, Chowdhary P (2015) Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci Process Impact 17(2):326–342CrossRefGoogle Scholar
  11. Chatterjee S, Sau GB, Mukherjee SK (2009) Plant growth promotion by a hexavalent chromium reducing bacterial strain, Cellulosimicrobium cellulans KUCr3. World J Microbiol Biotechnol 25(10):1829–1836CrossRefGoogle Scholar
  12. Chojnacka K (2010) Biosorption and bioaccumulation–the prospects for practical applications. Environ Int 36:299–307CrossRefGoogle Scholar
  13. Crean DE, Coker VC, Van der Laan G, Lloyd JR (2012) Engineering biogenic magnetite for sustained Cr(VI) remediation in flow-through systems. Environ Sci Technol 46:3352–3359CrossRefGoogle Scholar
  14. Deicke M, Bellenger JP, Wichard T (2013) Direct quantification of bacterial molybdenum and iron metallophores with ultra-high-performance liquid chromatography coupled to time-of-flight mass spectrometry. J Chromatogr A 1298:50–60CrossRefGoogle Scholar
  15. Desai C, Pathak H, Madamwar D (2010) Advances in molecular and “-omics” technologies to gauge microbial communities and bioremediation at xenobiotic/anthropogen contaminated sites. Bioresour Technol 101(6):1558–1569CrossRefGoogle Scholar
  16. Dimkpa CO, Svatoš A, Dabrowska P, Schmidt A, Boland W, Kothe E (2008) Involvement of siderophores in the reduction of metal-induced inhibition of auxin synthesis in Streptomyces spp. Chemosphere 74:19–25CrossRefGoogle Scholar
  17. Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B 28(2):83–99CrossRefGoogle Scholar
  18. El Amrani A, Dumas AS, Wick LY, Yergeau E, Berthomé R (2015) “Omics” insights into PAH degradation toward improved green remediation biotechnologies. Environ Sci Technol 49(19):11281–11291. https://doi.org/10.1021/acs.est.5b01740 CrossRefGoogle Scholar
  19. Elangovan R, Abhipsa S, Rohit B, Ligy P, Chandraraj K (2006) Reduction of Cr(VI)by a Bacillus sp. Biotechnol Lett 28:247–252CrossRefGoogle Scholar
  20. EPA (Environmental Protection Agency) (2004) Introduction to phytoremediation EPA-report. http://clu-in.org/techfocus/default.focus/sec/Bioremediation/cat/Overview/. Accessed Jan 2014
  21. Eslami M, Amoozegar MA, Asad S (2016) Isolation, cloning and characterization of an azoreductase from the halophilic bacterium Halomonas elongata. Int J Biol Macromol 85:111–116CrossRefGoogle Scholar
  22. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633CrossRefGoogle Scholar
  23. Frankel RB, Bazylinski DA (2003) Biologically induced mineralization by bacteria. Rev Mineral Geochem 54(1):95–114CrossRefGoogle Scholar
  24. Fuentes MS, Benimeli CS, Cuozzo SA, Amoroso MJ (2010) Isolation of pesticide-degrading actinomycetes from a contaminated site: bacterial growth, removal and dechlorination of organochlorine pesticides. Int Biodeterior Biodegrad 64:434–441CrossRefGoogle Scholar
  25. Fuentes MS, Sáez JM, Benimeli CS, Amoroso MJ (2011) Lindane biodegradation by defined consortia of indigenous Streptomyces strains. Water Air Soil Pollut 222:217–231CrossRefGoogle Scholar
  26. Fuentes MS, Alvarez A, Sáez JM, Benimeli CS, Amoroso MJ (2013a) Methoxychlor bioremediation by defined consortium of environmental Streptomyces strains. Int J Environ Sci Technol 11(4):1147–1156CrossRefGoogle Scholar
  27. Fuentes MS, Briceño GE, Sáez JM, Benimeli CS, Diez MC, Amoroso MJ (2013b) Enhanced removal of a pesticides mixture by single cultures and consortia of free and immobilized Streptomyces strains. BioMed Res Int. https://doi.org/10.1155/2013/392573
  28. Gadd GM (1999) Fungal production of citric and oxalic acid: importance in metal speciation, physiology and biogeochemical processes. Adv Microb Physiol 41:47–92Google Scholar
  29. Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. MBio 156(3):609–643Google Scholar
  30. Gadd GM, Pan X (2016) Biomineralization, bioremediation and biorecovery of toxic metals and radionuclides. Geomicrobiol J 33(3–4):175–178CrossRefGoogle Scholar
  31. Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. EJMP & EP (Eur J Mineral Process Environ Protect) 3(1):58–66Google Scholar
  32. Gentili AR, Cubitto MA, Ferrero M, Rodríguez MS (2006) Bioremediation of crude oil polluted seawater by a hydrocarbon-degrading bacterial strain immobilized on chitin and chitosan flakes. Int Biodeterior Biodegrad 57:222–228CrossRefGoogle Scholar
  33. Ghasemi A, Asad S, Kabiri M, Dabirmanesh B (2017) Cloning and characterization of Halomonas elongata L-asparaginase, a promising chemotherapeutic agent. Appl Microbiol Biotechnol 101:7227–7238CrossRefGoogle Scholar
  34. Gianfreda L, Rao MA (2004) Potential of extra cellular enzymes in remediation of polluted soils: a review. Enzym Microb Technol 35(4):339–354CrossRefGoogle Scholar
  35. Gillan DC, Van Camp C, Mergeay M, Provoost A, Thomas N, Vermard L, Billon G, Wattiez R (2017) Paleomicrobiology to investigate copper resistance in bacteria: isolation and description of Cupriavidus necator B9 in the soil of a medieval foundry. Environ Microbiol 19:770–787CrossRefGoogle Scholar
  36. Gómez PI, Barriga A, Cifuentes AS, González MA (2003) Effect of salinity on the quantity and quality of carotenoids accumulated by Dunaliella salina (strain CONC-007) and Dunaliella bardawil (strain ATCC 30861) chlorophyta. Biol Res 36:185–192CrossRefGoogle Scholar
  37. González H, Jensen T (1998) Nickel sequestering by polyphosphate bodies in Staphylococcus aureus. Microbios 93:179–185Google Scholar
  38. Guibaud G, Comte S, Bordas F, Dupuy S, Baudu M (2005) Comparison of the complexation potential of extracellular polymeric substances (EPS), extracted from activated sludges and produced by pure bacteria strains, for cadmium, lead and nickel. Chemosphere 59(5):629–638CrossRefGoogle Scholar
  39. Haferburg G, Kloess G, Schmitz W, Kothe E (2008) “Ni-struvite”–a new biomineral formed by a nickel resistant Streptomyces acidiscabies. Chemosphere 72(3):517–523CrossRefGoogle Scholar
  40. Handley-Sidhu S, Mullan TK, Grail Q, Albadarneh M, Ohnuki T, Macaskie LE (2016) Influence of pH, competing ions, and salinity on the sorption of strontium and cobalt onto biogenic hydroxyapatite. Sci Rep 6:23361CrossRefGoogle Scholar
  41. Hou W, Ma Z, Sun L, Han M, Lu J, Li Z, Mohamad OA, Wei G (2013) Extracellular polymeric substances from copper-tolerance Sinorhizobium meliloti immobilize Cu2+. J Hazard Mater 261:614–620CrossRefGoogle Scholar
  42. Irazusta V, Nieto-Peñalver CG, Cabral ME, Amoroso MJ, De Figueroa LIC (2013) Relationship among carotenoid production, copper bioremediation and oxidative stress in Rhodotorula mucilaginosa RCL-11. Process Biochem 48:803–809CrossRefGoogle Scholar
  43. Irazusta V, Michel L, De Figueroa L (2016) Biomineralización de cobre en Candida fukuyamaensis RCL-3. Rev Argent Microbiol 48(2):166–170Google Scholar
  44. Irazusta V, Bernal AR, Estévez MC, De Figueroa L (2018) Proteomic and enzymatic response under Cr (VI) overload in yeast isolated from textile-dye industry effluent. Ecotoxicol Environ Saf 148:490–500CrossRefGoogle Scholar
  45. Isaac P, Martínez FL, Bourguignon N, Sánchez LA, Ferrero MA (2015) Improved PAHs removal performance by a defined bacterial consortium of indigenous Pseudomonas and actinobacteria from Patagonia, Argentina. Int Biodeterior Biodegrad 101:23–31CrossRefGoogle Scholar
  46. Iustman LR, López NI, Ruzal SM, Vullo DL (2013) Bioremediation approaches in a laboratory activity for the industrial biotechnology and applied microbiology (IBAM) course. J Microbiol Biol Educ 14(1):131CrossRefGoogle Scholar
  47. Jones RK (1997) A simplified pseudo-component oil evaporation model. In: Proceedings of the 20th Arctic and Marine Oil Spill Program (AMOP) Technical Seminar, Environment Canada, Ottawa, pp 43–61Google Scholar
  48. Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 10:1996–2002CrossRefGoogle Scholar
  49. Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzym Res 2011. https://doi.org/10.4061/2011/805187
  50. Karnwal A (2017) Isolation and identification of plant growth promoting rhizobacteria from maize (Zea mays L) rhizosphere and their plant growth promoting effect on rice (Oryza sativa L). J Plant Prot Res 57:144–151CrossRefGoogle Scholar
  51. Kim HM, Chae N, Jung JY, Lee YK (2013) Isolation of facultatively anaerobic soil bacteria from Ny-Alesund, Svalbard. Polar Biol 36(6):787–796CrossRefGoogle Scholar
  52. Kletzin A (2006) Metabolism of inorganic sulfur compounds in archaea. In: Garret RA, Klenk HP (eds) Archaea: evolution, physiology, and molecular biology. Blackwell Publishing, Oxford, pp 262–274Google Scholar
  53. Konhauser K, Riding R (2012) Bacterial biomineralization. In: Knoll H, Canfield DE, Konhauser KO (eds) Fundamentals of geobiology. Wiley, Somerset, pp 105–130CrossRefGoogle Scholar
  54. Krause L, Diaz NN, Goesmann Z, Kelley S, Nattkemper TW, Rohwer F, Edwards RA, Stoye J (2008) Phylogenetic classification of short environmental DNA fragments. Nucleic Acids Res 36(7):2230–2239CrossRefGoogle Scholar
  55. Litchfield CD (2011) Potential for industrial products from halophilic Archaea. J Int Microbiol Biotechnol 38(10):1635–1647CrossRefGoogle Scholar
  56. Lowenstam HA (1981) Minerals formed by organisms. Science 211(4487):1126–1131CrossRefGoogle Scholar
  57. Lynch MD, Neufeld JD (2015) Ecology and exploration of the rare biosphere. Nat Rev Microbiol 13(4):217CrossRefGoogle Scholar
  58. Ma Y, Oliveira RS, Nai F, Rajkumar M, Luo Y, Rocha I, Freitas H (2015) The hyperaccumulator Sedum plumbizincicola harbors metal-resistant endophytic bacteria that improve its phytoextraction capacity in multi-metal contaminated soil. J Environ Manag 156:62–69Google Scholar
  59. Ma Y, Oliveira RS, Freitas H, Zhang C (2016) Biochemical and molecular mechanisms of plant-microbe-metal interactions: relevance for phytoremediation. Front Plant Sci 7:918Google Scholar
  60. Madigan MT, Martinko JM, Parker J (2009) Brock biology of microorganisms, 12th edn. Pearson Benjamin Cummings, New YorkGoogle Scholar
  61. Majumder A, Bhattacharyya K, Bhattacharyya S, Kole SC (2013) Arsenic-tolerant, arsenite-oxidising bacterial strains in the contaminated soils of West Bengal, India. Sci Total Environ 46:1006–1014CrossRefGoogle Scholar
  62. Majzlik P, Strasky A, Adam V, Nemec M, Trnkova L, Zehnalek J, Hubalek J, Provaznik I, Kizek R (2011) Influence of zinc (II) and copper(II) ions on Streptomyces bacteria revealed by electrochemistry. Int J Electrochem Sci 6:2171–2191Google Scholar
  63. Martinez F, Orce IG, Rajal VB, Irazusta V (2018) Salar del Hombre Muerto, source of lithium-tolerant bacteria. Environ Geochem Health 1–15. https://doi.org/10.1007/s10653-018-0148-2
  64. Moraga NB, Amoroso MJ, Rajal VB (2014a) Strategies to ameliorate soils contaminated with boron compounds. In: Bioremediation in Latin America. Springer, Cham, pp 41–51Google Scholar
  65. Moraga NB, Poma HR, Amoroso MJ, Rajal VB (2014b) Isolation and characterization of indigenous Streptomyces and Lentzea strains from soils containing boron compounds in Argentina. J Basic Microbiol 54(6):568–577CrossRefGoogle Scholar
  66. Moraga NB, Irazusta V, Amoroso MJ, Rajal VB (2017) Bio-precipitates produced by two autochthonous boron tolerant Streptomyces strains. J Environ Chem Eng 5(4):3373–3383CrossRefGoogle Scholar
  67. Moran MA (2009) Metatranscriptomics: eavesdropping on complex microbial communities-large-scale sequencing of mRNAs retrieved from natural communities provides insights into microbial activities and how they are regulated. Microbe 4(7):329Google Scholar
  68. More TT, Yadav JSS, Yan S, Tyagi RD, Surampalli RY (2014) Extracellular polymeric substances of bacteria and their potential environmental applications. J Environ Manag 144:1–25CrossRefGoogle Scholar
  69. Mulligan CN, Galvez-Cloutier R (2003) Bioremediation of metal contamination. Environ Monit Assess 84:45–60CrossRefGoogle Scholar
  70. Mulligan CN, Yong RN, Gibbs BF (2001) Surfactant-enhanced remediation of contaminated soil: a review. Eng Geol 60:371–380CrossRefGoogle Scholar
  71. Naik MM, Dubey SK (2013) Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicol Environ Saf 98:1–7CrossRefGoogle Scholar
  72. Nancucheo I, Rowe OF, Hedrich S, Johnson DB (2016) Solid and liquid media for isolating and cultivating acidophilic and acid-tolerant sulfate-reducing. FEMS Microbiol Lett 363:fnwo83. https://doi.org/10.1093/femsle/fnwo83
  73. Navarro CA, Von Bernath D, Jerez CA (2013) Heavy metal resistance strategies of acidophilic bacteria and their acquisition: importance for biomining and bioremediation. Biol Res 46(4):363–371CrossRefGoogle Scholar
  74. Nesme J, Achouak W, Agathos SN, Bailey M, Baldrian P, Brunel D, Frostegård Å, Heulin T, Jansson JK, Jurkevitch E et al (2016) Back to the future of soil metagenomics. Front Microbiol 7:73CrossRefGoogle Scholar
  75. Olegario J, Yee N, Miller M et al (2010) Reduction of Se(VI) to Se (-II) by zero valent iron nanoparticle suspensions. J Nanopart Res 12(6):2057–2068CrossRefGoogle Scholar
  76. Ortega-Cabello L, Pérez-Méndez HI, Manjarrez-Alvarez N, Solís-Oba A, López-Luna A (2017) Effect of iron salts on Rhodococcus sp. and Gordonia sp. on carotenoid production. Rev Mex Ing Quim 16(1):1–10Google Scholar
  77. Oves M, Saghir Khan M, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83CrossRefGoogle Scholar
  78. Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12(1):633–654CrossRefGoogle Scholar
  79. Panikov NS, Sizova MV (2007) Growth kinetics of microorganisms isolated from Alaskan soil and permafrost in solid media frozen down to −35°C. FEMS Microbiol Ecol 59(2):500–512CrossRefGoogle Scholar
  80. Park JH, Bolan N, Megharaj M, Naidu R (2011) Isolation of phosphate solubilizing bacteria and their potential for lead immobilization in soil. J Hazard Mater 185:829–836CrossRefGoogle Scholar
  81. Pérez-González T, Valverde-Tercedor C, Jiménez-López C (2011) Biomineralización bacterianad e magnetita y aplicaciones. http://www.ehues/sem/seminario_pdf/SEMINARIO_SEM_7_058pdf. Accessed Nov 2013
  82. Prasad R (2017) Mycoremediation and environmental sustainability, vol 1. Springer International Publishing, Cham, Switzerland https://doi.org/10.1007/978-3-319-68957-9
  83. Prasad R (2018) Mycoremediation and environmental sustainability, vol 2. Springer International Publishing, Cham, Switzerland https://www.springer.com/us/book/9783319773858
  84. Quince C, Walker AW, Simpson JT, Loman NJ, Segata N (2017) Shotgun metagenomics, from sampling to analysis. Nat Biotechnol 35(9):833–844CrossRefGoogle Scholar
  85. Rangarajan V, Narayanan M (2018) Biosurfactants in soil bioremediation. In: Advances in soil microbiology: recent trends and future prospects. Springer, Singapore, pp 193–204CrossRefGoogle Scholar
  86. Romano-Armada N, Amoroso MJ, Rajal VB (2017) Effect of glyphosate application on soil quality and health under natural and zero tillage field conditions. Soil Environ 36(2):141–154CrossRefGoogle Scholar
  87. Rosas Hernández I (2009) Identification and characterization of microorganisms with resistance to mercurial compounds. Master’s thesis, Interdisciplinary Center for Research and Studies on the Environment and Development (CIIEMAD)Google Scholar
  88. Ryder C, Byrd M, Wozniak DJ (2007) Role of polysaccharides in Pseudomonas aeruginosa biofilm development. Curr Opin Microbiol 10(6):644–648CrossRefGoogle Scholar
  89. Sánchez-Castro I, Amador-García A, Moreno-Romero C et al (2017) Screening of bacterial strains isolated from uranium mill tailings porewaters for bioremediation purposes. J Environ Radioact 166:130–141CrossRefGoogle Scholar
  90. Sandmann G (2001) Carotenoid biosynthesis and biotechnological application. Arch Biochem Biophys 385:4–12CrossRefGoogle Scholar
  91. Singh OV (2006) Proteomics and metabolomics: the molecular make-up of toxic aromatic pollutant bioremediation. Proteomics 6(20):5481–5492CrossRefGoogle Scholar
  92. Singh OV, Nagaraj NS (2006) Transcriptomics, proteomics and interactomics: unique approaches to track the insights of bioremediation. Brief Funct Genomics 4(4):355–362CrossRefGoogle Scholar
  93. Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14(9):389–397CrossRefGoogle Scholar
  94. Singh A, Van Hamme JD, Ward OP (2007) Surfactants in microbiology and biotechnology: part 2. Application aspects. Biotechnol Adv 25(1):99–121CrossRefGoogle Scholar
  95. Slaveykova VI, Parthasarathy N, Dedieu K, Toescher D (2010) Role of extracellular compounds in Cd-sequestration relative to Cd uptake by bacterium Sinorhizobium meliloti. Environ Pollut 158:2561–2565. https://doi.org/10.1016/j.envpol.2010.05.016 CrossRefGoogle Scholar
  96. Song B, Palleroni NJ, Häggblom MM (2000) Isolation and characterization of diverse halobenzoate-degrading denitrifying bacteria from soils and sediments. Appl Environ Microbiol 66:3446–3453CrossRefGoogle Scholar
  97. Suarez P (2002) Heavy metal incorporation in bacteria and its environmental significance. Interciencia 27:160–172Google Scholar
  98. Techtmann SM, Hazen TC (2016) Metagenomic applications in environmental monitoring and bioremediation. J Ind Microbiol Biotechnol 43(10):1345–1354CrossRefGoogle Scholar
  99. Tekere M, Lötter A, Olivier J, Jonker N, Venter S (2011) Metagenomic analysis of bacterial diversity of Siloam hot water spring, Limpopo, South Africa. Afr J Biotechnol 10(78):18005–18012Google Scholar
  100. Thompson IP, Van Der Gast CJ, Ciric L, Singer AC (2005) Bioaugmentation for bioremediation: the challenge of strain selection. Environ Microbiol 7(7):909–915CrossRefGoogle Scholar
  101. Venkatesh NM, Vedaraman N (2012) Remediation of soil contaminated with copper using rhamnolipids produced from Pseudomonas aeruginosa MTCC2297 using waste frying rice bran oil. Ann Microbiol 62:85–91CrossRefGoogle Scholar
  102. Villas-Bôas SG, Bruheim P (2007) The potential of metabolomics tools in bioremediation studies. OMICS 11(3):305–313CrossRefGoogle Scholar
  103. Villas-Bôas SG, Mas S, Åkesson M, Smedsgaard J, Nielsen J (2005) Mass spectrometry in metabolome analysis. Mass Spectrom Rev 24(5):613–646CrossRefGoogle Scholar
  104. Vishnivetskaya T, Kathariou S, McGrath J, Gilichinsky D, Tiedje JM (2000) Low-temperature recovery strategies for the isolation of bacteria from ancient permafrost sediments. Extremophiles 4:165–173CrossRefGoogle Scholar
  105. Vodnik D, Grčman H, Maček I, van Elteren JT, Kovacevic M (2008) The contribution of glomalin-related soil protein to Pb and Zn sequestration in polluted soil. Sci Total Environ 392(1):130–136CrossRefGoogle Scholar
  106. Wallenius K, Rita H, Simpanen S, Mikkonen A, Niemi RM (2010) Sample storage for soil enzyme activity and bacterial community profiles. J Microbiol Methods 81(1):48–55CrossRefGoogle Scholar
  107. Wang D-Z, Kong L-F, Li Y-Y, Xie Z-X (2016) Environmental microbial community proteomics: status, challenges and perspectives. Int J Mol Sci 17(8):1275. https://doi.org/10.3390/ijms17081275 CrossRefGoogle Scholar
  108. Watanabe K (2001) Microorganisms relevant to bioremediation. CurrOpinBiotechnol 12(3):237–241Google Scholar
  109. Wiegel J, Ljungdahl LG, Rawson JH (1979) Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J Bacteriol 139:800–810Google Scholar
  110. Zhang DY, Wang JL, Pan XL (2006) Cadmium sorption by EPSs produced by anaerobic sludge under sulfate-reducing conditions. J Hazard Mater 138:589–593CrossRefGoogle Scholar
  111. Zheng J, Feng J-Q, Zhou L, Mbadinga SM, Gu JD, Mu BZ (2018) Characterization of bacterial composition and diversity in a long-term petroleum contaminated soil and isolation of high-efficiency alkane-degrading strains using an improved medium. World J Microbiol Biotechnol 34:1–11CrossRefGoogle Scholar
  112. Zhou Q, Chen Y, Yang M, Li W, Deng L (2013) Enhanced bioremediation of heavy metal from effluent by sulfate-reducing bacteria with copper-iron bimetallic particles support. Bioresour Technol 136:413–417CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Fabiana Lilian Martínez
    • 1
  • Norma Beatriz Moraga
    • 1
    • 2
  • Neli Romano-Armada
    • 1
    • 2
  • María Florencia Yañez-Yazlle
    • 1
  • Verónica Beatriz Rajal
    • 1
    • 2
    • 3
  • Verónica Irazusta
    • 1
    • 4
  1. 1.Instituto de Investigaciones para la Industria Química (INIQUI) –Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Universidad Nacional de Salta (UNSa)SaltaArgentina
  2. 2.Facultad de Ingeniería, UNSaSaltaArgentina
  3. 3.Singapore Centre for Environmental Life Sciences Engineering (SCELSE), School of Biological SciencesNanyang Technological UniversitySingaporeSingapore
  4. 4.Facultad de Ciencias Naturales, UNSaSaltaArgentina

Personalised recommendations