Electrochemical Device Setup and Fabrication

  • Matthias Kühne
Part of the Springer Theses book series (Springer Theses)


In this chapter we introduce the phenomenology of the electrochemical lithiation of graphite. Processes are discussed that happen during lithiation both within LixC6 as well as at the interface with the electrolyte. We then present the polymer electrolyte used, including its properties and positioning capabilities. The fabrication of bilayer graphene devices studied in this work is explained thereafter.


  1. 1.
    Manthiram, A.: Materials aspects: an overview. In: Nazri, G.-A., Pistoia, G. (eds.) Lithium Batteries: Science and Technology, pp. 3–41. Springer Science+Business Media, New York (2003)Google Scholar
  2. 2.
    Winter, M., Besenhard, J.O.: Lithiated carbons. In: Daniel, C., Besenhard, J.O. (eds.) Handbook of Battery Materials, pp. 433–478. Wiley, Weinheim, Germany (2011)CrossRefGoogle Scholar
  3. 3.
    Yao, F., et al.: Diffusion mechanism of lithium ion through basal plane of layered graphene. J. Am. Chem. Soc. 134, 8646–8654 (2012)CrossRefGoogle Scholar
  4. 4.
    Berry, V.: Impermeability of graphene and its applications. Carbon 62, 1–10 (2013)CrossRefGoogle Scholar
  5. 5.
    Enoki, T., Endo, M., Suzuki, M.: Graphite Intercalation Compounds and Applications. Oxford University Press, Oxford (2003)Google Scholar
  6. 6.
    Bernal, J.D.: The structure of graphite. Proc. Roy. Soc. Lond. A 106, 749–773 (1924)ADSCrossRefGoogle Scholar
  7. 7.
    Dresselhaus, M.S., Dresselhaus, G.: Intercalation compounds of graphite. Adv. Phys. 30, 139–326 (1981)ADSCrossRefGoogle Scholar
  8. 8.
    Kirczenow, G.: Staging and kinetics. In: Zabel, H., Solin, S.A. (eds.) Graphite Intercalation Compounds I. Springer Series in Materials Science, vol. 14, pp. 59–100. Springer, Berlin (1990)CrossRefGoogle Scholar
  9. 9.
    Dahn, J.R.: Phase diagram of Li\(_x\)C\(_6\). Phys. Rev. B 44, 9170–9177 (1991)ADSCrossRefGoogle Scholar
  10. 10.
    Fong, R., von Sacken, U., Dahn, J.R.: Studies of lithium intercalation into carbons using nonaqueous electrochemical cells. J. Electrochem. Soc. 137, 2009–2013 (1990)CrossRefGoogle Scholar
  11. 11.
    Sugawara, K., Kanetani, K., Sato, T., Takahashi, T.: Fabrication of Li-intercalated bilayer graphene. AIP Adv. 1, 022103 (2011)ADSCrossRefGoogle Scholar
  12. 12.
    Holzwarth, N.A.W.: Electronic band structure of graphite intercalation compounds. In: Zabel, H., Solin, S.A. (eds.) Graphite Intercalation Compounds II. Springer Series in Materials Science, vol. 18, pp. 7–52. Springer, Berlin (1992)CrossRefGoogle Scholar
  13. 13.
    Winter, M., Moeller, K.C., Besenhard, J.O.: Carbonaceous and graphitic anodes. In: Nazri, G.-A., Pistoia, G. (eds.) Lithium Batteries: Science and Technology, pp. 144–194. Springer Science+Business Media, New York (2003)Google Scholar
  14. 14.
    Guzman, D.M., Alyahyaei, H.M., Jishi, R.A.: Superconductivity in graphene-lithium. 2D Mater. 1, 021005 (2014)CrossRefGoogle Scholar
  15. 15.
    Shirodkar, S.N., Kaxiras, E.: Li intercalation at graphene/hexagonal boron nitride interfaces. Phys. Rev. B 93, 245438 (2016)Google Scholar
  16. 16.
    Kaloni, T.P., Cheng, Y.C., Upadhyay Kahaly, M., Schwingenschlögl, U.: Charge carrier density in Li-intercalated graphene. Chem. Phys. Lett. 534, 29–33 (2012)ADSCrossRefGoogle Scholar
  17. 17.
    Peled, E., Golodnitsky, D., Penciner, J.: The anode/electrolyte interface. In: Daniel, C., Besenhard, J.O. (eds.) Handbook of Battery Materials, pp. 479–524. Wiley, Germany (2011)CrossRefGoogle Scholar
  18. 18.
    Yamaki, J., Tobishima, S.: Rechargeable lithium anodes. In: Daniel, C., Besenhard, J.O. (eds.) Handbook of Battery Materials, pp. 377–404. Wiley, Germany (2011)CrossRefGoogle Scholar
  19. 19.
    Gray, F., Armand, M.: Polymer electrolytes. In: Daniel, C., Besenhard, J.O. (eds.) Handbook of Battery Materials, pp. 627–656. Wiley, Germany (2011)CrossRefGoogle Scholar
  20. 20.
    Nair, J.R., Gerbaldi, C., Destro, M., Bongiovanni, R., Penazzi, N.: Methacrylic-based solid polymer electrolyte membranes for lithium-based batteries by a rapid UV-curing process. React. Funct. Polym. 71, 409–416 (2011)CrossRefGoogle Scholar
  21. 21.
    Nair, J.R., et al.: UV-cured methacrylic membranes as novel gel-polymer electrolyte for Li-ion batteries. J. Power Sources 178, 751–757 (2008)ADSCrossRefGoogle Scholar
  22. 22.
    Gonnelli, R.S., et al.: Temperature dependence of electric transport in few-layer graphene under large charge doping induced by electrochemical gating. Sci. Rep. 5, 9554 (2015)CrossRefGoogle Scholar
  23. 23.
    Evans, J., Vincent, C.A., Bruce, P.G.: Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987)CrossRefGoogle Scholar
  24. 24.
    Popovic, J., Hasegawa, G., Moudrakovski, I., Maier, J.: Infiltrated porous oxide monoliths as high lithium transference number electrolytes. J. Mater. Chem. A 4, 7135–7140 (2016)CrossRefGoogle Scholar
  25. 25.
    Lafkioti, M.: Untersuchung der 2D Transporteigenschaften von Graphen auf hydrophobem Substrat. Doctoral dissertation, Universität Stuttgart, Germany (2011)Google Scholar
  26. 26.
    Novoselov, K.S., et al.: Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004)ADSCrossRefGoogle Scholar
  27. 27.
    Dean, C.R., et al.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotech. 5, 722–726 (2010)ADSCrossRefGoogle Scholar
  28. 28.
    Ferrari, A.C., et al.: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006)Google Scholar
  29. 29.
    Nagashio, K., Yamashita, T., Nishimura, T., Kita, K., Toriumi, A.: Electrical transport properties of graphene on SiO\(_2\) with specific surface structures. J. Appl. Phys. 110, 024513 (2011)ADSCrossRefGoogle Scholar
  30. 30.
    ASTM F76-08(2016): Standard test methods for measuring resistivity and Hall coefficient and determining Hall mobility in single-crystal semiconductors. ASTM International, West Conshohocken, USA (2016)Google Scholar
  31. 31.
    Bonaccorso, F., et al.: Production and processing of graphene and 2d crystals. Mater. Today 15, 564–589 (2012)CrossRefGoogle Scholar
  32. 32.
    Pelton, A.D.: The Au-Li (gold-lithium) system. Bull. Alloy Phase Diagr. 7, 228–231 (1986)CrossRefGoogle Scholar
  33. 33.
    Bale, C.W.: The Li-Ti (lithium-titanium) system. Bull. Alloy Phase Diagr. 10, 135–138 (1989)CrossRefGoogle Scholar
  34. 34.
    Yazami, R.: Lithium reaction with metal nanofilms. In: Yazami, R. (ed.) Nanomaterials for Lithium-Ion Batteries: Fundamentals and Applications, pp. 199–226. Pan Stanford Publishing, CRC Press, Taylor & Francis Group, Boca Raton, USA (2014)Google Scholar
  35. 35.
    Lohmann, T.: Elektronischer Transport in Graphen. Doctoral dissertation, RWTH Aachen, Germany (2010)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Max Planck Institute for Solid State Research StuttgartGermany

Personalised recommendations