Advertisement

Comparative Analysis of the Fault Diagnosis in CHMLI Using k-NN Classifier Based on Different Feature Extractions

  • Nagendra Vara Prasad Kuraku
  • Yigang He
  • Murad Ali
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 801)

Abstract

Recently, the development of multilevel inverters has great progress in many Industrial applications because of its high efficiency and low switching frequency control methods. To improve the fault diagnosis accuracy, A k-Nearest Neighbors (k-NN) algorithm based on the different feature extractions is used. In this paper, the Principle Component Analysis (PCA) and Probabilistic Principle Component Analysis (PPCA) are used for the feature extraction. Firstly, the data from the output voltage signals under different fault conditions of the Cascaded H-Bridge Multilevel Inverter (CHMI) is optimized by using different feature extractions. Then, the k-NN classifier is used to identify the accurate fault location to diagnosis the fault. Finally, the FFT analysis also applied to evaluate the proposed k-NN technique. To validate the proposed technique the experimental setup has built in the laboratory and verify the simulation results. Based on the experimental and simulation results, the proposed k-NN technique has better performance when the PPCA feature extraction is used.

Keywords

5-level MLI Fault diagnosis Fault features Principle component analysis (PCA) Probabilistic principle component analysis (PPCA) k-Nearest neighbors (k-NN) 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant No. 51577046, The State Key Program of National Natural Science Foundation of China under Grant No. 51637004, The National Key Research and Development Plan “Important Scientific Instruments and Equipment Development” Grant No. 2016YFF0102200, Equipment Research Project in Advance Grant No. 41402040301.

References

  1. 1.
    Mariethoz, S.: Systematic design of high-performance hybrid cascaded multilevel inverters with active voltage balance and minimum switching losses. IEEE Trans. Power Electron. 28, 3100–3113 (2013)CrossRefGoogle Scholar
  2. 2.
    Khoucha, F., Lagoun, S.M., Kheloui, A., Benbouzid, M.E.H.: A comparison of symmetrical and asymmetrical three-phase H-bridge multilevel inverter for DTC induction motor drives. IEEE Trans. Energy Convers. 26(1), 64–72 (2011)CrossRefGoogle Scholar
  3. 3.
    Mathew, J., Rajeevan, P.P., Mathew, K., Azeez, N.A., Gopakumar, K.: A multilevel inverter scheme with dodecagonal voltage space vectors based on flying capacitor topology for induction motor drives. IEEE Trans. Power Electron. 28, 516–525 (2013)CrossRefGoogle Scholar
  4. 4.
    Nair, V., Pramanick, S., Gopakumar, K., Franquelo, L.: Novel symmetric 6-phase induction motor drive using stacked multilevel inverters with a single DC link and neutral point voltage balancing. IEEE Trans. Ind. Electron. 1–1 (2016)Google Scholar
  5. 5.
    Liu, L., Li, H., Hwang, S.H., Kim, J.M.: An energy-efficient motor drive with autonomous power regenerative control system based on cascaded multilevel inverters and segmented energy storage. IEEE Trans. Ind. Appl. 49, 178–188 (2013)CrossRefGoogle Scholar
  6. 6.
    Himmelmann, P., Hiller, M., Krug, D., Beuermann, M.: A new modular multilevel converter for medium voltage high power oil & gas motor drive applications. In: 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe), pp. 1–11 (2016)Google Scholar
  7. 7.
    Sudha Letha, S., Thakur, T., Kumar, J.: Harmonic elimination of a photo-voltaic based cascaded H-bridge multilevel inverter using PSO (particle swarm optimization) for induction motor drive. Energy 107, 335–346 (2016)CrossRefGoogle Scholar
  8. 8.
    Khomfoi, S., Tolbert, L.M.: Fault diagnosis and reconfiguration for multilevel inverter drive using AI-based techniques. IEEE Trans. Ind. Electron. 54, 2954–2968 (2007)CrossRefGoogle Scholar
  9. 9.
    Choi, U.M., Lee, K.B., Blaabjerg, F.: Diagnosis and tolerant strategy of an open-switch fault for T-type three-level inverter systems. IEEE Trans. Ind. Appl. 50, 495–508 (2014)CrossRefGoogle Scholar
  10. 10.
    Khomfoi, S., Tolbert, L.M.: Fault diagnostic system for a multilevel inverter using a neural network. IEEE Trans. Power Electron. 22, 1062–1069 (2007)CrossRefGoogle Scholar
  11. 11.
    Sim, H.W., Lee, J.S., Lee, K.B.: Detecting open-switch faults: using asymmetric zero-voltage switching states. IEEE Ind. Appl. Mag. 22, 27–37 (2016)CrossRefGoogle Scholar
  12. 12.
    Wang, T., Xu, H., Han, J., Elbouchikhi, E., Benbouzid, M.E.H.: Cascaded H-bridge multilevel inverter system fault diagnosis using a PCA and multiclass relevance vector machine approach. IEEE Trans. Power Electron. 30, 7006–7018 (2015)CrossRefGoogle Scholar
  13. 13.
    Aleenejad, M., Iman-Eini, H., Farhangi, S.: Modified space vector modulation for fault-tolerant operation of multilevel cascaded H-bridge inverters. IET Power Electron. 6, 742–751 (2013)CrossRefGoogle Scholar
  14. 14.
    Aleenejad, M., Ahmadi, R.: Fault-tolerant multilevel cascaded H-bridge inverter using impedance-sourced network. IET Power Electron. 9, 2186–2195 (2016)CrossRefGoogle Scholar
  15. 15.
    Lu, Bin, Sharma, S.K.: A literature review of IGBT fault diagnostic and protection methods for power inverters. IEEE Trans. Ind. Appl. 45(5), 1770–1777 (2009)CrossRefGoogle Scholar
  16. 16.
    Keswani, R.A., Suryawanshi, H.M., Ballal, M.S.: Multi-resolution analysis for converter switch faults identification. Power Electron. IET 8(5), 783–792 (2015)CrossRefGoogle Scholar
  17. 17.
    Keswani, R.A., Suryawanshi, H.M., Ballal, M.S., Renge, M.M.: Wavelet modulus maxima for single switch open fault in multi-level inverter. Electr. Power Compon. Syst. 42(9), 889–900 (2014)CrossRefGoogle Scholar
  18. 18.
    Lezana, P., Pou, J., Meynard, T.A., Rodriguez, J., Ceballos, S., Richardeau, F.: Survey on fault operation on multilevel inverters. IEEE Trans. Ind. Electron. 57(7) (2010)Google Scholar
  19. 19.
    Bernieri, A., D’Apuzzo, M., Sansone, L., Savastano, M.: A neural network approach for identification and fault diagnosis on dynamic systems. IEEE Trans. Instrum. Meas. 43(6), 867–873 (1994)CrossRefGoogle Scholar
  20. 20.
    Chen, A., Hu, L., Chen, L., Deng, Y., He, X.: A multilevel converter topology with fault-tolerant ability. IEEE Trans. Power Electron. 20(2), 405–415 (2005)CrossRefGoogle Scholar
  21. 21.
    Palanivel, P., Dash, S.S.: Analysis of THD and output voltage performance for cascaded multilevel inverter using carrier pulse width modulation techniques. IET Power Electron. 4, 951–958 (2011)CrossRefGoogle Scholar
  22. 22.
    Tipping, M.E., Bishop, C.M.: Mixtures of Probabilistic Principle Component Analyzers, pp. 443–482. MIT Press (2006)Google Scholar
  23. 23.
    Tipping, M.E., Bishop, C.M.: Probabilistic principal component analysis. J. R. Stat. Soc. 13 (1999)Google Scholar
  24. 24.
    Benameur, S., Mignotte, M., Destrempes, F., Guise, J.A.D.: Three-dimensional biplanar reconstruction of scoliotic rib cage using the estimation of a mixture of probabilistic prior models. IEEE Trans. Biomed. Eng. 52, 1713–1728 (2005)CrossRefGoogle Scholar
  25. 25.
    Jon, E., Dong Kook, K., Nam Soo, K.: Robust correlation estimation for EMAP-based speaker adaptation. IEEE Signal Process. Lett. 8, 184–186 (2001)CrossRefGoogle Scholar
  26. 26.
    Dong Kook, K., Nam Soo, K.: Rapid speaker adaptation using probabilistic principal component analysis. IEEE Signal Process. Lett. 8, 180–183 (2001)CrossRefGoogle Scholar
  27. 27.
    Peter He, Q., Wang, J.: Fault detection using the k-nearest neighbor rule for semiconductor manufacturing processes. IEEE Trans. Semicond. Manuf. 20(4) (2007)Google Scholar
  28. 28.
    Zhou, Z., Wen, C., Yang, C.: Fault detection using random projections and k-nearest neighbor rule for semiconductor manufacturing processes. IEEE Trans. Semicond. Manuf. 28(1) (2015)Google Scholar
  29. 29.
    Norko, A.: Simple Image Classification using Principal Component Analysis (PCA). GMU Volgenau School of Engineering, Fairfax, VA, USA, 9 December 2015Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nagendra Vara Prasad Kuraku
    • 1
  • Yigang He
    • 1
  • Murad Ali
    • 1
  1. 1.School of Electrical Engineering and AutomationHefei University of TechnologyHefeiPeople’s Republic of China

Personalised recommendations