Advertisement

Enhancing Performance of Hybrid Named Entity Recognition for Amazighe Language

  • Meryem Talha
  • Siham Boulaknadel
  • Driss Aboutajdine
Chapter
Part of the Studies in Computational Intelligence book series (SCI, volume 801)

Abstract

Named Entity Recognition (NER) involves the identification and classification of named entities in texts. This is an important subtask in most high level NLP applications and semantic Web technologies. Besides, various studies have been done on NER for most of the languages and in particular for English. However the studies for Amazighe have lagged behind these for a long while. Recently, Amazighe NER have caught more attention due to the increasing flow of Amazighe texts available on the Web and the need to discover named entities occurring in these texts, considering the fact that a difference in language impose new challenges. Some systems using different approaches have been proposed in terms of extracting Amazighe named entities, however the recent system proposed based on a hybrid approach, the only existing hybrid system, reports a drop in F-Measure from 93 to 73% when compared to the rule based approach. In this paper, we present our enhancement of the previously proposed method by adding a new set of handcrafted lexical resources and a new set of features. The system is able to identify seven different kinds of entities such as “Person”, “Location”, “Organization”, “Numbers”, “Percent”, “Money”, “Date/Time”, it was tested on our Amazighe corpus “AMCorp” with satisfactory results.

Keywords

Named entity recognition Amazighe language Hybrid approach GATE 

References

  1. 1.
    Amrouch, M., Rachidi, A., El Yassa, M., Mammass, D.: Handwritten Amazigh character recognition based on Hidden Markov models. Int. J. Gr. Vis. Image Process. 10(5), 11–18 (2010)Google Scholar
  2. 2.
    Es, S.Y., Rachidi, A., El Yassa, M., Mammas, D.: Printed Amazigh character recognition by a syntactic approach using finite automata. Int. J. Gr. Vis. Image Process. 10(2), 1–8 (2010)Google Scholar
  3. 3.
    Fakir, M., Bouikhalene, B., Moro, K.: Skeletonization methods evaluation for the recognition of printed tifinaghe characters. In: Proceedings of the 1er Symposium International sur le Traitement Automatique de la Culture Amazighe. Agadir, Morocco, pp. 33–47 (2009)Google Scholar
  4. 4.
    Boulaknadel, S., Ataa allah, F.: Building a standard Amazigh corpus. In: Proceedings of the International Conference on Intelligent Human Computer Interaction, Prague, Tchec (2011)Google Scholar
  5. 5.
    Boulaknadel, S., Ataa Allah, F.: Online Amazigh concordancer. In: Proceedings of International Symposium on Image Video Communications and Mobile Networks, Rabat, Maroc (2010)Google Scholar
  6. 6.
    Ataa Allah, F., Boulaknadel, S.: Pseudo-racinisation de la langue amazighe. In: Proceeding of Traitement Automatique des Langues Naturelles, Montréal, Canada (2010)Google Scholar
  7. 7.
    Nejme, F., Boulaknadel, S., Aboutajdine, D.: Analyse Automatique de la Morphologie Nominale Amazighe. Actes de la conférence du Traitement Automatique du Langage Naturel (TALN), Les Sables d’Olonne, France (2013)Google Scholar
  8. 8.
    Nejme, F., Boulaknadel, S., Aboutajdine, D.: Finite state morphology for Amazigh language. In: Proceeding of International Conference on Intelligent Text Processing and Computational Linguistics (CICLing), Samos, Greece (2013)Google Scholar
  9. 9.
    Chinchor, N.A., Marsh, E.: Muc-7 information extraction task definition. In: Proceeding of the Seventh Message Understanding Conference (MUC-7), Appendices (1998)Google Scholar
  10. 10.
    Voorhees, E.M., Harman, D.K. (eds.): TREC: Experiment and Evaluation in Information Retrieval, vol. 1. MIT Press, Cambridge (2005)Google Scholar
  11. 11.
    Molla, D., Zaanen, M., Smith, D.: Named entity recognition for question answering. In: Proceedings of the 2006 Australasian Language Technology Workshop (ALTW2006), pp. 51–58 (2006)Google Scholar
  12. 12.
    Babych, B., Hartley, A.: Improving machine translation quality with automatic named entity recognition. In: Proceedings of the 7th International EAMT Workshop on MT and Other Language Technology Tools, Improving MT Through Other Language Technology Tools: Resources and Tools for Building MT, pp. 1–8. Association for Computational Linguistics (2003)Google Scholar
  13. 13.
    Chen, Z., Ji, H.: Collaborative ranking: a case study on entity linking. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing, pp. 771–781 (2011)Google Scholar
  14. 14.
    Darvinder, K., Gupta, V.: A survey of named entity recognition in English and other Indian languages. IJCSI Int. J. Comput. Sci. Iss. 7(6), 1694-0814 (2010)Google Scholar
  15. 15.
    Andoni, A., Montse, C., Seán, G.: NERC-fr: supervised named entity recognition for French. In: International Conference on Text, Speech, and Dialogue, pp. 158–165. Springer, Cham (2014)Google Scholar
  16. 16.
    Galicia-Haro, S.N., Gelbukh, A., Bolshakov, I.A.: Recognition of named entities in Spanish texts. In: MICAI 2004: Advances in Artificial Intelligence, pp. 420–429 (2004)Google Scholar
  17. 17.
    Bai, S., et al.: System for Chinese tokenization and named entity recognition. U.S. Patent No. 6,311,152, 30 Oct 2001Google Scholar
  18. 18.
    Sasano, R., Kurohashi, S.: Japanese named entity recognition using structural natural language processing. In: Proceedings of IJCNLP, pp. 607–612 (2008)Google Scholar
  19. 19.
    Doğan, K., Arici, N., Dilek, K.: Named entity recognition in Turkish: approaches and issues. In: International Conference on Applications of Natural Language to Information Systems, pp. 176–181. Springer, Cham (2017)Google Scholar
  20. 20.
    Nadeau, D., Sekine, S.: A survey of named entity recognition and classification. Lingvisticae Investigationes 30(1), 3–26 (2007)CrossRefGoogle Scholar
  21. 21.
    Talha, M., Boulaknadel, S., Aboutajdine, D.: NERAM: named entity recognition for Amazighe language. In: 21st International Conference of TALN, pp. 517–524. Aix Marseille University, Marseille (2014)Google Scholar
  22. 22.
    Boulaknadel, S., Talha, M., Aboutajdine, D.: Amazighe named entity recognition using a rule based approach. In: 11th ACS/IEEE International Conference on Computer Systems and Applications. Doha, Qatar (2014)Google Scholar
  23. 23.
    Talha, M., Boulaknadel, S., Aboutajdine, D.: L’apport d’une approche symbolique pour le repérage des entités nommées en langue amazighe. In: EGC, pp. 29–34, Luxembourg (2015)Google Scholar
  24. 24.
    Talha, M., Boulaknadel, S., Aboutajdine, D.: Development of Amazighe named entity recognition system using hybrid method. J. Res. Comput. Sci. 90, 151–161 (2015)Google Scholar
  25. 25.
    Küçük, D., Yazıcı, A.: Named entity recognition experiments on Turkish texts. In: Andreasen, T., Yager, R.R., Bulskov, H., Christiansen, H., Larsen, H.L. (eds.) Flexible Query Answering Systems. FQAS 2009. Lecture Notes in Computer Science, vol. 5822, pp. 524–535. Springer, Berlin, Heidelberg (2009)Google Scholar
  26. 26.
    Shaalan, K., Raza, H.: NERA: named entity recognition for Arabic. J. Am. Soc. Inform. Sci. Technol. 60(8), 1652–1663 (2009)CrossRefGoogle Scholar
  27. 27.
    Sharnagat, R.: Named Entity Recognition: A Literature Survey (2014)Google Scholar
  28. 28.
    Bikel, D.M., Miller, S., Schwartz, R., Weischedel, R.: Nymble: a high-performance learning name-finder. In: Proceedings of the Fifth Conference on Applied Natural Language Processing, pp. 194–201. Association for Computational Linguistics (1997)Google Scholar
  29. 29.
    Zhou, G., Su, J.: Named entity recognition using an HMM-based chunk tagger. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 473–480. Association for Computational Linguistics (2002)Google Scholar
  30. 30.
    Zhou, G., Su, J.: Named entity recognition using an HMM-based chunk tagger. In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics, pp. 473–480. Association for Computational Linguistics (2002)Google Scholar
  31. 31.
    Borthwick, A., Sterling, J., Agichtein, E., Grishman, R.: NYU: description of the MENE named entity system as used in MUC-7. In: Proceedings of the Seventh Message Understanding Conference (MUC-7) (1998)Google Scholar
  32. 32.
    McCallum, A., Li, W.: Early results for named entity recognition with conditional random fields, feature induction and web-enhanced lexicons. In: Proceedings of the Seventh Conference on Natural Language Learning at HLT-NAACL 2003, vol. 4, pp. 188–191. Association for Computational Linguistics (2003)Google Scholar
  33. 33.
    Benajiba, Y.: Arabic named entity recognition. Ph.D. thesis, Techninal University of Valencia (2009)Google Scholar
  34. 34.
    Abdallah, S., Shaalan, K., Shoaib, M.: Integrating rule-based system with classification for Arabic named entity recognition. In: Gelbukh, A. (ed.) Computational Linguistics and Intelligent Text Processing. Lecture Notes in Computer Science, vol. 7181, pp. 311–322. Springer, Berlin, Heidelberg (2012)CrossRefGoogle Scholar
  35. 35.
    Greenberg, J.: The Languages of Africa. The Hague (1966)Google Scholar
  36. 36.
    Ouakrim, O.: Fonética y fonología del Bereber. Survey at the University of Autònoma de Barcelona (1995)Google Scholar
  37. 37.
    Vapnik, V.: The Nature of Statistical Learning Theory. Springer, New York (1995). ISBN 0-387-94559-8CrossRefGoogle Scholar
  38. 38.
    Vapnik, V.: Statistical Learning Theory. Springer, New York (1998)zbMATHGoogle Scholar
  39. 39.
    Cortes, C., Vapnik, V.: Support-vector networks. In: Machine Learning, pp. 273–297 (1995)Google Scholar
  40. 40.
    Hsu, C.W., Lin, C.J.: A comparison of methods for multiclass support vector machines. IEEE Trans. Neural Netw. 13(2), 415–425 (2002)CrossRefGoogle Scholar
  41. 41.
    Kreßel, U.H.G.: Pairwise classification and support vector machines. In: Advances in Kernel Methods, pp. 255–268. MIT Press (1999)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Meryem Talha
    • 1
  • Siham Boulaknadel
    • 2
  • Driss Aboutajdine
    • 1
  1. 1.LRIT, Unité Associée au CNRST (URAC 29), Faculty of ScienceMohammed V UniversityAgdal, RabatMorocco
  2. 2.Royal Institut of Amazighe Culture Allal El Fassi AvenueMadinat al Irfane, Rabat-InstitutsRabatMorocco

Personalised recommendations