Advertisement

Polyurethane/POSS Hybrid Materials

  • Edyta HebdaEmail author
  • Krzysztof Pielichowski
Chapter
Part of the Springer Series on Polymer and Composite Materials book series (SSPCM)

Abstract

Organic–inorganic hybrid materials, prepared via chemical synthesis or physical blending of functionalized nanofillers within polymer matrix, have gained an increased attention in the recent years. Polyhedral oligomeric silsesquioxane (POSS) nanoparticles, due to their nanometer size and functionalization possibilities, are applied as effective modifiers—both chemical and physical, for polymer matrices, including polyurethanes (PU). Research efforts focused on polymers incorporating polyhedral oligomeric silsesquioxane (POSS) have intensified in recent years, revealing new synthetic routes and interesting features of these composite materials. This chapter describes polyurethane/POSS systems with different architectures—with POSS molecules as pendant groups in the polyurethane chain, incorporated in the main chain and as cross-linking agents. The methods of incorporation of POSS into polymer matrices via covalent bonds or physical blending have been presented, and the influence of preparation conditions on the structure and properties of nanocomposites was discussed. Application fields, such as gas membranes or biomedical implants, have been outlined.

Keywords

Polyurethane POSS Hybrid materials Nanocomposites Synthesis Modification Properties 

Notes

Acknowledgements

Authors are grateful to the Polish National Science Center for support under Contract No. 2017/27/B/ST8/01584.

References

  1. 1.
    Florjańczyk Z, Penczek S (1998) Chemia polimerów, v.II, Oficyna Wydawnicza Politechniki Warszawskiej, WarszawaGoogle Scholar
  2. 2.
    Wirpsza Z (1991) Poliuretany: chemia, technologia, zastosowanie. Wydawnictwo Naukowo-Techniczne, WarszawaGoogle Scholar
  3. 3.
    Randall D, Lee S (2002) The polyurethane book. Wiley Ltd., New YorkGoogle Scholar
  4. 4.
    Szycher M (2003) Szycher’s handbook of polyurethane. CRC Press, Taylor &Francis Group, Boca RatonGoogle Scholar
  5. 5.
    Prisacariu C (2011) Polyurethane Elastomers – from morphology to mechanical aspects. Springer Wien, New YorkCrossRefGoogle Scholar
  6. 6.
    Prociak A, Rokicki G (2014) Materiały poliuretanowe. Polskie Wydawnictwo Naukowe, WarszawaGoogle Scholar
  7. 7.
    Allport DC, Gilbert DS, Outterside SM (2003) MDI and TDI: a safety Health and the environment. Wiley, ChichesterCrossRefGoogle Scholar
  8. 8.
    Rokicki G, Parzuchowski PG, Mazurek M (2015) Non-isocyanate polyurethanes: synthesis, properties, and applications. Polym Adv Technol 26:707–761CrossRefGoogle Scholar
  9. 9.
    Kathalewar MS, Joshi PB, Sabnis AS et al (2013) Non-isocyanate polyurethanes: from chemistry to applications. RSC Adv 3:4110CrossRefGoogle Scholar
  10. 10.
    Yaocheng H, Liyun L, Xu R et al (2011) Nonisocyanate polyurethanes and their applications. Prog Chem 23(6):1181–1188Google Scholar
  11. 11.
    Beniah G, Fortman DJ, Heath WH et al (2017) Non-Isocyanate polyurethane thermoplastic elastomer: amide-based chain extender yields enhanced nanophase separation and properties in polyhydroxyurethane. Macromolecules 50(11):4425–4434CrossRefGoogle Scholar
  12. 12.
    Guo Z, Kim TY, Lei K, Pereira T et al (2008) Strengthening and thermal stabilization of polyurethane nanocomposites with silicon carbide nanoparticles by a surface-initiated-polymerization approach. Compos Sci Technol 62(1):164–170CrossRefGoogle Scholar
  13. 13.
    Kuan HC, Ma CC, Chang WP et al (2005) Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos Sci Technol 65(11):1703–1710CrossRefGoogle Scholar
  14. 14.
    Koerner H, Liu W, Alexander M et al (2005) Deformation morphology correlations in electrically conductive carbon nanotube thermoplastic polyurethane nanocomposites. Polymer 46:4405–4420CrossRefGoogle Scholar
  15. 15.
    Daniel MC, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem Rev 104(1):293–346.  https://doi.org/10.1021/cr030698+CrossRefPubMedGoogle Scholar
  16. 16.
    Kuo SW, Chang FC (2011) POSS related polymer nanocomposites. Prog Polym Sci 36:1649–1696.  https://doi.org/10.1016/j.progpolymsci.2011.05.002CrossRefGoogle Scholar
  17. 17.
    Kickelbick G (2007) Hybrid materials. synthesis, characterization and application. Wiley-VCH, WeinheimGoogle Scholar
  18. 18.
    Markovic E, Constantopolous K, Janis G (2011) Polyhedral oligomeric silsesquioxanes: from early and strategic development through to materials application. In: Matisons Hartmann-Thompson C (ed) Applications of polyhedral oligomeric silsesquioxanes. Springer, New York, pp 1–46Google Scholar
  19. 19.
    Harrison PG (1997) Silicate cages: precursors to new materials. J Organomet Chem 542(2):141–183.  https://doi.org/10.1016/S0022-328X(96)06821-0CrossRefGoogle Scholar
  20. 20.
    Pielichowski K, Njuguna J, Janowski B, Pielichowski J (2006) Polyhedral oligomeric silsesquioxanes (POSS)-containing nanohybrid polymers. In: supramolecular polymers polymeric betains oligomers, Springer, Berlin, Heidelberg, pp 225–296.  https://doi.org/10.1007/11614784
  21. 21.
    Pan G (2007) Polyhedral oligomeric silsesquioxane (POSS). In: Mark JE (ed) Physical properties of polymers handbook, Springer, New York, pp 577–584.  https://doi.org/10.1007/978-0-387-69002-5Google Scholar
  22. 22.
    Janowski B, Pielichowski K (2008) Polimery nanohybrydowe zawierające poliedryczne oligosilseskwioksany. Polimery 53:87–98Google Scholar
  23. 23.
    Cordes DB, Lickiss PD, Rataboul F (2010) Recent developments in the chemistry of cubic polyhedral oligosilsesquioxanes. Chem Rev 110:2081–2173CrossRefGoogle Scholar
  24. 24.
    Schwab JJ, Lichtenhan JD, Mather PT, Romouribe A et al, (1996) 21th meeting of the American Chemical Society, New Orleans, LAGoogle Scholar
  25. 25.
    Feher F, Schwab J, Tellers D, Burstein A (1998) A general strategy for synthesizing cubeoctameric silsesquioxanes containing polymerizable functional groups. Main Group Chem 2(3):169–181CrossRefGoogle Scholar
  26. 26.
    Fu BX, Hsiao BS, White H, Rafailovich M et al (2000) Nanoscale reinforcement of polyhedral oligomeric silsesquioxane (POSS) in polyurethane elastomer. Polym Int 49:437–440CrossRefGoogle Scholar
  27. 27.
    Fu BX, Hsiao BS, Pagola S, Stephens P et al (2001) Structural development during deformation of polyurethane containing polyhedral oligomeric silsesquioxanes (POSS) molecules. Polymer 42:599–611CrossRefGoogle Scholar
  28. 28.
    Hoflund GB, Gonzalez RI, Philips SHJ (2001) In situ oxygen atom erosion study of a polyhedral oligomeric silsesquioxane-polyurethane copolymer. Adhesion Sci Technol 15:1199–1211.  https://doi.org/10.1163/156856101317048707CrossRefGoogle Scholar
  29. 29.
    Turri S, Levi M (2005) Preparation and characterization of polyurethane hybrids from reactive polyhedral oligomeric silsesquioxanes. Macromolecules 38:5569–5574CrossRefGoogle Scholar
  30. 30.
    Turri S, Levi M (2005) Wettability of polyhedral oligomeric silsesquioxane nanostructured polymer surfaces. Macromol Rapid Commun 26:1233–1236.  https://doi.org/10.1002/marc.200500274CrossRefGoogle Scholar
  31. 31.
    Zhang S, Zou Q, Wu L (2006) Preparation and characterization of polyurethane hybrids from reactive polyhedral oligomeric silsesquioxanes. Macromol Mater Eng 291:895–901.  https://doi.org/10.1002/mame.200600144CrossRefGoogle Scholar
  32. 32.
    Król B, Król P (2010) Materiały powłokowe otrzymywane z kationomerów poliuretanowych modyfikowanych funkcjonalizowanym silseskwioksanem. Cz. I. Budowa chemiczna kationomerów. Polimery 55(6):440–451Google Scholar
  33. 33.
    Król B, Król P (2010) Materiały powłokowe otrzymywane z kationomerów poliuretanowych modyfikowanych funkcjonalizowanym silseskwioksanem. Cz. II. Właściwości użytkowe. Polimery 55(11–12):855–862Google Scholar
  34. 34.
    Madbouly SA, Otaigbe JU, Nanda AK et al (2007) Rheological behavior of POSS/polyurethane-urea nanocomposite films prepared by homogeneous solution polymerization in aqueous dispersions. Macromolecules 40:4982–4991CrossRefGoogle Scholar
  35. 35.
    Madbouly SA, Otaigbe JU (2009) Recent advances in synthesis, characterization and rheological properties of polyurethanes and POSS/polyurethane nanocomposites dispersions and film. Prog Polym Sci 34:1283–1332.  https://doi.org/10.1016/j.progpolymsci.2009.08.002CrossRefGoogle Scholar
  36. 36.
    Lai YS, Tsai CW, Yang HW, Wang GP et al (2009) Structural and electrochemical properties of polyurethanes/polyhedral oligomeric silsesquioxanes (PU/POSS) hybrid coatings on aluminum alloys. Mater Chem Phys 117:91–98CrossRefGoogle Scholar
  37. 37.
    Hu J, Li L, Zhang S, Gong L et al (2013) Novel phenyl-POSS-polyurethane aqueous dispersions and their hybrid coatings. J Appl Polym Sci 130:1611–1620.  https://doi.org/10.1002/APP.39303CrossRefGoogle Scholar
  38. 38.
    Janowski B, Pielichowski K (2008) Thermo(oxidative) stability of novel polyurethane/POSS nanohybrid elastomers. Thermochim Acta 478:51–53CrossRefGoogle Scholar
  39. 39.
    Lewicki JP, Pielichowski K, TremblotDeLaCroix P, Janowski B et al (2010) Thermal degradation studies of polyurethane/POSS nanohybrid elastomers. Polym Degrad Stab 95(6):1099–1105.  https://doi.org/10.1016/j.polymdegradstab.2010.02.021CrossRefGoogle Scholar
  40. 40.
    Lewicki JP, Mayer BP, Pielichowski K, Janowski B et al (2010) Synthesis and characterization via solid state NMR of novel POSS-polyurethane nanohybrid elastomers. Polymer Preprints 51(2):343–344Google Scholar
  41. 41.
    Raftopoulos KN, Pandis Ch, Apekis L, Pissisa P et al (2010) Polyurethane–POSS hybrids: molecular dynamics studies. Polymer 51:709–718CrossRefGoogle Scholar
  42. 42.
    Raftopoulos KN, Jancia M, Aravopoulou D, Hebda E et al (2013) POSS along the hard segments of polyurethane. Phase separation and molecular dynamics. Macromolecules 46:7378–7386.  https://doi.org/10.1021/ma401417tCrossRefGoogle Scholar
  43. 43.
    Raftopoulos KN, Janowski B, Apekis L, Pissis P et al (2013) Direct and indirect effects of POSS on the molecular mobility of polyurethanes with varying segment Mw. Polymer 54:2745–2754.  https://doi.org/10.1016/j.polymer.2013.03.036CrossRefGoogle Scholar
  44. 44.
    Cui D, Tian F, Ozkan CS, Wang M et al (2005) Effect of single wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155(1):73–85.  https://doi.org/10.1016/j.toxlet.2004.08.015CrossRefPubMedGoogle Scholar
  45. 45.
    Kim SK, Heo SJ, Koak JY, Lee JH et al (2007) A biocompatibility study of a reinforced acrylic-based hybrid denture composite resin with polyhedraloligosilsesquioxane. J Oral Rehabil 34(5):389–395.  https://doi.org/10.1111/j.1365-2842.2006.01671.xCrossRefPubMedGoogle Scholar
  46. 46.
    Punshon G, Vara DS, Sales KM, Kidane AG et al (2005) Interactions between endothelial cells and a poly(carbonate-silsesquioxane-bridge-urea)urethane. Biomaterials 26(32):6271–6279.  https://doi.org/10.1016/j.biomaterials.2005.03.034CrossRefPubMedGoogle Scholar
  47. 47.
    Lakhani HA, Mel A, Seifalian AM (2015) The effect of TGF-β1 and BMP-4 on bone marrow-derived stem cell morphology on a novel bioabsorbable nanocomposite material. Artif Cells Nanomedicine Biotechnol 43(4):230–234.  https://doi.org/10.3109/21691401.2013.856015CrossRefGoogle Scholar
  48. 48.
    Maqsood A, Hamilton G, Seifalian AM (2010) Viscoelastic behaviour of a small calibre vascular graft made from a POSS-nanocomposite. In: 32nd annual international conference of the IEEE engineering in medicine and biology 251–254.  https://doi.org/10.1109/iembs.2010.5627472
  49. 49.
    Kannan RY, Salacinski HJ, Sales KM, Butler PE et al (2006) The endothelialization of polyhedral oligomeric silsesquioxane nanocomposites: an in vitro study. Cell Biochem Biophys 45(2):129–136CrossRefGoogle Scholar
  50. 50.
    Guo YL, Wang W, Otaigbe JU (2010) Biocompatibility of synthetic poly(ester urethane)/polyhedral oligomeric silsesquioxane matrices with embryonic stem cell proliferation and differentiation. J Tissue Eng Regen Med 4(7):553–564CrossRefGoogle Scholar
  51. 51.
    Wu J, Gu X, Mather PT (2010) Biostable multiblock thermoplastic polyurethanes incorporating poly(ε-caprolactone) and polyhedral oligomeric silsesquioxane (POSS). Trans Annu Meet Soc Biomater 1(84)Google Scholar
  52. 52.
    Ghanbari H, Cousins BG, Seifalian AM (2011) A nanocage for nanomedicine: polyhedral oligomeric silsesquioxane (POSS). Macromol Rapid Commun 32(14):1032–1046.  https://doi.org/10.1002/marc.201100126CrossRefPubMedGoogle Scholar
  53. 53.
    Gupta A, Vara DS, Punshon G, Sales KM et al (2009) In vitro small intestinal epithelial cell growth on a nanocomposite polycaprolactone scaffold. Biotechnol Appl Biochem 54(4):221–229CrossRefGoogle Scholar
  54. 54.
    Kannan RY, Salacinski HJ, Odlyha M, Butler PE et al (2006) The degradative resistance of polyhedral oligomeric silsesquioxane nanocore integrated polyurethanes: an in vitro study. Biomaterials 27(9):1971–1979CrossRefGoogle Scholar
  55. 55.
    Salacinski HJ, Handcock S, Seifalian AM (2005) Polymer for use in conduits and medical devices. Patent Number: WO2005070998, 4 Aug 2005Google Scholar
  56. 56.
    Kannan RY, Salacinski HJ, Edirisinghe MJ, Hamilton G et al (2006) Polyhedral oligomeric silsequioxane-polyurethane nanocomposite microvessels for an artificial capillary bed. Biomaterials 27:4618–4626CrossRefGoogle Scholar
  57. 57.
    Kannan RY, Salacinski HJ, Groot JD, Clatworthy I et al (2006) The antithrombogenic potential of a polyhedral oligomeric silsesquioxane (POSS) nanocomposite. Biomacromolecules 7:215–223CrossRefGoogle Scholar
  58. 58.
    Ahmed M, Ghanbari H, Cousins BG, Hamilton G et al (2011) Small calibre polyhedral oligomeric silsesquioxane nanocomposite cardiovascular grafts: influence of porosity on the structure, haemocompatibility and mechanical properties. Acta Biomater 7(11):3857–3867CrossRefGoogle Scholar
  59. 59.
    Ahmed M, Hamilton G, Seifalian AM (2014) The performance of a small-calibre graft for vascular reconstructions in a senescent sheep model. Biomaterials 35(33):9033–9040.  https://doi.org/10.1016/j.biomaterials.2014.07.008CrossRefPubMedGoogle Scholar
  60. 60.
    Tai NR, Salacinski HJ, Edwards A, Hamilton G et al (2000) Compliance properties of conduits used in vascular reconstruction. Br J Surg 87(11):1516–1524.  https://doi.org/10.1046/j.1365-2168.2000.01566.xCrossRefPubMedGoogle Scholar
  61. 61.
    Salacinski HJ, Tai NR, Carson RJ, Edwards A et al (2002) In vitro stability of a novel compliant poly(carbonate-urea)urethane to oxidative and hydrolytic stress. J Biomed Mater Res 59(2):207–218CrossRefGoogle Scholar
  62. 62.
    Silver JH, Lin JC, Lim F, Tegoulia VA et al (1999) Surface properties and hemocompatibility of alkyl-siloxane monolayers supported on silicone rubber: effect of alkyl chain length and ionic functionality. Biomaterials 20(17):1533–1543CrossRefGoogle Scholar
  63. 63.
    Park JH, Bae YH (2002) Hydrogels based on poly(ethylene oxide) and poly(tetramethylene oxide) or poly(dimethyl siloxane): synthesis, characterization, in vitro protein adsorption and platelet adhesion. Biomaterials 23(8):1797–1808.  https://doi.org/10.1016/S0142-9612(01)00306-4CrossRefPubMedGoogle Scholar
  64. 64.
    Kannan RY, Salacinski HJ, Butler PE, Seifalian AM (2005) Polyhedral oligomeric silsesquioxane nanocomposites: the next generation material for biomedical applications. Acc Chem Res 38(11):879–884.  https://doi.org/10.1021/ar050055bCrossRefPubMedGoogle Scholar
  65. 65.
    Kannan RY, Salacinski HJ, Sales K, Butler P et al (2005) The roles of tissue engineering and vascularisation in the development of micro-vascular net-works: a review. Biomaterials 26:1857–1875CrossRefGoogle Scholar
  66. 66.
    Salacinski HJ, Tai NR, Punshon G, Giudiceandrea A et al (2000) Optimal endothelialisation of a new compliant poly(carbonate-urea)urethane vascular graft with effect of physiological shear stress. Eur J Vasc Endovasc Surg 20(4):342–352CrossRefGoogle Scholar
  67. 67.
    Chawla R, Tan A, Ahmed M, Crowley C et al (2014) A polyhedral oligomeric silsesquioxane–based bilayered dermal scaffold seeded with adipose tissue–derived stem cells: in vitro assessment of biomechanical properties. J Surg Res 188(2):361–372.  https://doi.org/10.1016/j.jss.2014.01.006CrossRefPubMedGoogle Scholar
  68. 68.
    Kidane AG, Burriesci G, Edirisinghe M, Ghanbari H et al (2009) A novel nanocomposite polymer for development of synthetic heart valve leaflets. Acta Biomater 5(7):2409–2417.  https://doi.org/10.1016/j.actbio.2009.02.025CrossRefPubMedGoogle Scholar
  69. 69.
    Ghanbari H, Kidane AG, Burriesci G, Ramesh B et al (2010) The anti-calcification potential of a silsesquioxane nanocomposite polimer under in vitro conditions: potential material for synthetic leaflet heart valve. Acta Biomater 6(11):4249–4260.  https://doi.org/10.1016/j.actbio.2010.06.015CrossRefPubMedGoogle Scholar
  70. 70.
    Chaloupka K, Motwani M, Seifalian AM (2011) Development of a new lacrimal drainage conduit using POSS nanocomposite. Biotechnol Appl Biochem 58(5):363–370.  https://doi.org/10.1002/bab.53CrossRefPubMedGoogle Scholar
  71. 71.
    Bakhshi R, Darbyshire A, Evans JE, You Z et al (2011) Polymeric coating of surface modified nitinol stent with POSS-nanocomposite polimer. Colloids Surf B 86(1):93–105.  https://doi.org/10.1016/j.colsurfb.2011.03.024CrossRefGoogle Scholar
  72. 72.
    Kannan RY, Salacinski HJ, De Groot J, Clatworthy I et al (2006) The antithrombogenic potential of a polyhedral oligomeric silsesquioxane (POSS) nanocomposite. Biomacromol 7(1):215–223.  https://doi.org/10.1021/bm050590zCrossRefGoogle Scholar
  73. 73.
    Farhatnia Y, Pang JH, Darbyshire A, Dee R et al. (2016) Next generation covered stents made from nanocomposite materials: a complete assessment of uniformity, integrity and biomechanical properties. Nanomed Nanotechnol Biol Med 12(1):1–12.  https://doi.org/10.1016/j.nano.2015.07.002CrossRefGoogle Scholar
  74. 74.
    Desai M, Bakhshi R, Zhou X, Odlyha M et al (2012) A sutureless aortic stent-graft based on a nitinol scaffold bonded to a compliant nanocomposite polymer is durable for 10 years in a simulated in vitro model. J Endovasc Ther 19(3):415–427.  https://doi.org/10.1583/11-3740MR.1CrossRefPubMedGoogle Scholar
  75. 75.
    Oaten M, Choudhury NR (2005) Silsesquioxane-urethane hybrid for thin film applications. Macromolecules 38(15):6392–6401.  https://doi.org/10.1021/ma0476543CrossRefGoogle Scholar
  76. 76.
    Pistor V, Conto D, Ornaghi FG, Zattera AJ (2012) Microstructure and crystallization kinetics of polyurethane thermoplastics containing trisilanol isobutyl POSS. J Nanomaterials 2012, Article ID 283031, 8 pages.  https://doi.org/10.1155/2012/283031CrossRefGoogle Scholar
  77. 77.
    Pan R, Shanks R, Kong I, Wang L (2014) Trisilanolisobutyl POSS/polyurethane hybrid composites: preparation, WAXS and thermal properties. Polym Bull 71:2453–2464.  https://doi.org/10.1007/s00289-014-1201-7CrossRefGoogle Scholar
  78. 78.
    Pan R, Shanks R, Wang L (2015) Crystallite cluster structure formation resulting from semi-enclosed cage interaction in TSI-POSS/PU hybrid composites. Adv Mater Res 1091:19–23CrossRefGoogle Scholar
  79. 79.
    Pan R, Shanks R, Liu Y (2015) The effect of humping semi-enclosed cage structure on polymer chains characteristics of TSI-POSS/PU hybrid composites. Appl Mech Mater 751:30–34CrossRefGoogle Scholar
  80. 80.
    Pan R, Wang LL, Shanks R, Liu Y (2016) The influence of trisilanolisobutyl POSS on domain microstructure of a polyurethane hybrid composite: A molecular simulation approach. Silicon.  https://doi.org/10.1007/s12633-016-9463-3
  81. 81.
    Raftopoulos KN, Jancia M, Aravopoulou D, Hebda E et al (2013) POSS along the hard segments of polyurethane. Phase Sep Molecular Dyn Macromol 46(18):7378–7386.  https://doi.org/10.1021/ma401417tCrossRefGoogle Scholar
  82. 82.
    Lewicki JP, Pielichowski K, Jancia M, Hebda E et al (2014) Degradative and morphological characterization of POSS modified nanohybrid polyurethane elastomers. Polym Degrad Stab 104:50–56CrossRefGoogle Scholar
  83. 83.
    Neumann D, Fisher M, Tran L, Matisons JG (2002) Synthesis and characterization of an isocyanate functionalized polyhedral oligosilsesquioxane and the subsequent formation of an organic-inorganic hybrid polyurethane. J Am Chem Soc 124(47):13998–13999.  https://doi.org/10.1021/ja0275921CrossRefPubMedGoogle Scholar
  84. 84.
    Markovic E, Nguyen K, Clarke S, Constantopoulos K et al (2013) Synthesis of POSS–polyurethane hybrids using octakis (m-isoprenyl-α, α′-dimethylbenzylisocyanato dimethylsiloxy) octasilsesquioxane (Q8M8TMI) as a crosslinking agent. J Polym Sci Polym Chem 51(23):5038–5045.  https://doi.org/10.1002/pola.26934CrossRefGoogle Scholar
  85. 85.
    Diao S, Mao L, Zhang L, Key YW (2015) POSS/Polyurethane hybrids and nanocomposites: a review on preparation, structure and performance elastomers and composites. 50(1):35–48Google Scholar
  86. 86.
    Liu H, Zheng S (2005) Polyurethane networks nanoreinforced by polyhedral oligomeric silsesquioxane. Macromol Rapid Commun 26:196–200CrossRefGoogle Scholar
  87. 87.
    Liu H, Zheng S (2006) Polyurethane networks modified with octa(propylglycidyl ether) polyhedral oligomeric silsesquioxane. Macromol Chem Phys 207:1842–1851CrossRefGoogle Scholar
  88. 88.
    Zhang Q, He H, Xi K, Huang X et al (2011) Synthesis of N-phenylaminomethyl POSS and its utilization in polyurethane. Macromolecules 44(3):550–557.  https://doi.org/10.1021/ma101825jCrossRefGoogle Scholar
  89. 89.
    Zhang Q, Huang X, Wang X, Jia X et al (2014) Rheological study of the gelation of cross-linking polyhedral oligomeric silsesquioxanes (POSS)/PU composites. Polymer 55:1282–1291CrossRefGoogle Scholar
  90. 90.
    Zhang Q, Huang X, Meng Z, Jia X et al (2014) N-phenylaminomethyl hybrid silica, a better alternative to achieve reinforced PU nanocomposites. RSC Adv 4(35):18146–18156.  https://doi.org/10.1039/C4RA01419GCrossRefGoogle Scholar
  91. 91.
    Zhang Q, He H, Xi K, Huang X et al (2011) Synthesis of N-phenylaminomethyl POSS and its utilization in polyurethane. Macromolecules 44:550–557.  https://doi.org/10.1021/ma101825jCrossRefGoogle Scholar
  92. 92.
    Zhang Q, Huang X, Wang X, Jia X et al (2014) Rheological study of the gelation of cross-linking polyhedral oligomeric silsesquioxanes (POSS)/PU composites. Polymer 55:1282–1291.  https://doi.org/10.1016/j.polymer.2014.01.040CrossRefGoogle Scholar
  93. 93.
    Madhavan K, Reddy BSR (2009) Synthesis and characterization of polyurethane hybrids: influence of the polydimethylsiloxane linear chain and silsesquioxane cubic structure on the thermal and mechanical properties of polyurethane hybrids. J Appl Polym Sci 113:4052–4065CrossRefGoogle Scholar
  94. 94.
    Madhavan K, Reddy BSR (2009) Structure–gas transport property relationships of poly(dimethylsiloxane–urethane) nanocomposite membranes. J Membr Sci 342(1–2):291–299CrossRefGoogle Scholar
  95. 95.
    Madhavan K, Reddy BSR (2006) Poly(dimethylsiloxane-urethane) membranes: effect of hard segment in urethane on gas transport properties. J Membr Sci 283:357CrossRefGoogle Scholar
  96. 96.
    Madhavan K, Gnanasekaran D, Reddy BSR (2011) Poly(dimethylsiloxane-urethane) membranes: effect of linear siloxane chain and caged silsesquioxane on gas transport properties. J Polym Res 18(6):1851–1861.  https://doi.org/10.1007/s10965-011-9592-8CrossRefGoogle Scholar
  97. 97.
    Hu L, Jiang P, Bian G, Huang M et al. (2017) Effect of octa(aminopropyl) polyhedral oligomeric silsesquioxane (OapPOSS) functionalized graphene oxide on the mechanical, thermal, and hydrophobic properties of waterborne polyurethane composites. J Appl Polym Sci 44440–44450.  https://doi.org/10.1002/app.44440
  98. 98.
    Xue Y, Liu Y, Lu F, Qu J et al (2012) Functionalization of graphene oxide with polyhedral oligomeric silsesquioxane (POSS) for multifunctional applications. J Phys Chem Lett 3:1607–1612.  https://doi.org/10.1021/jz3005877CrossRefPubMedGoogle Scholar
  99. 99.
    Prządka D, Jęczalik J, Andrzejewska E, Marciniec B et al (2013) Novel hybrid polyurethane/POSS materials via bulk polymerization. React Funct Polym 73:114–121.  https://doi.org/10.1016/j.reactfunctpolym.2012.09.006CrossRefGoogle Scholar
  100. 100.
    Ti Y, Chen D (2008) Temperature dependence of hydrogen bond in Fe-OCAP/polyurethane blends. J Appl Polym Sci 130(4):2265–2271CrossRefGoogle Scholar
  101. 101.
    Zhang J, Hu CP (2008) Synthesis, characterization and mechanical properties of polyester-based aliphatic polyurethane elastomers containing hyperbranched polyester segments. J Am Chem Soc 44:3708Google Scholar
  102. 102.
    Prządka D, Jęczalik J, Andrzejewska E, Dutkiewicz M (2013) Synthesis and properties of hybrid urethane polymers containing polyhedral oligomeric silsesquioxane crosslinker. J Appl Polym Sci https://doi.org/10.1002/app.39385CrossRefGoogle Scholar
  103. 103.
    Kim EH, Myoung SW, Jung YG, Paik U (2009) Polyhedral oligomeric silsesquioxane-reinforced polyurethane acrylate. Prog Org Coat 64(2–3):205–209.  https://doi.org/10.1016/j.porgcoat.2008.07.026CrossRefGoogle Scholar
  104. 104.
    Teng CP, Mya KY, Win KY, Yeo CC et al (2014) Star-shaped polyhedral oligomeric silsesquioxane-polycaprolactone-polyurethane as biomaterials for tissue engineering application. NPG Asia Mater 6:e142.  https://doi.org/10.1038/am.2014.102CrossRefGoogle Scholar
  105. 105.
    Liu Y, Yang X, Zhang W, Zheng S (2006) Star-shaped poly(ε-caprolactone) with polyhedral oligomeric silsesquioxane core. Polymer 47(19):6814–6825.  https://doi.org/10.1016/j.polymer.2006.07.050CrossRefGoogle Scholar
  106. 106.
    She MS, Lo TY, Hsueh HY, Ho RM (2013) Nanostructured thin films of degradable block copolymers and their applications. NPG Asia Mater 5:e42.  https://doi.org/10.1038/am.2013.5CrossRefGoogle Scholar
  107. 107.
    Wu J, Mather PT (2009) POSS polymers: physical properties and biomaterials applications. J Macromol Sci Polym Rev 49(1):25–63.  https://doi.org/10.1080/15583720802656237CrossRefGoogle Scholar
  108. 108.
    Mya KY, Wang Y, Shen L, Xu J et al (2009) Star-like polyurethane hybrids with functional cubic silsesquioxanes: preparation, morphology, and thermomechanical properties. J Polym Sci Part A Polym Chem 47:4602–4616.  https://doi.org/10.1002/pola.23512CrossRefGoogle Scholar
  109. 109.
    Mya KY, He CB, Huang J, Xiao Y et al (2004) Preparation and thermomechanical properties of epoxy resins modified by octafunctional cubic silsesquioxane epoxides. J Polym Sci Part A Polym Chem 42(14):3490–3503.  https://doi.org/10.1002/pola.20168CrossRefGoogle Scholar
  110. 110.
    Raftopoulos KN, Koutsoumpis S, Jancia M, Lewicki JP et al (2015) Reduced phase sparation and slowing of dynamics in polyurethanes with three-dimensional POSS-based cross-linking moieties. Macromolecules 48(5):1429–1441.  https://doi.org/10.1021/ma5023132CrossRefGoogle Scholar
  111. 111.
    Raftopoulos KN, Pielichowski K (2015) Segmental dynamics in hybrid polymer/POSS nanomaterials. Prog Polym Sci 52:136–187.  https://doi.org/10.1016/j.progpolymsci.2015.01.003CrossRefGoogle Scholar
  112. 112.
    Blattmann H (2016) Mülhaupt R (2016) Multifunctional POSS cyclic carbonates and non-isocyanate polyhydroxyurethane hybrid materials. Macromolecules 49(3):742–751.  https://doi.org/10.1021/acs.macromol.5b02560CrossRefGoogle Scholar
  113. 113.
    Liu G, Wu G, Chen J et al (2016) Synthesis, modification and properties of rosin-based non-isocyanate polyurethanes coatings. Prog Org Coat 101:461–467.  https://doi.org/10.1016/j.porgcoat.2016.09.019CrossRefGoogle Scholar
  114. 114.
    Liu G, Wu G, Chen J et al (2015) Synthesis and Properties of POSS-containing Gallic acid-based non-isocyanate polyurethanes coatings. Polym Degrad Stab 121:247–252.  https://doi.org/10.1016/j.polymdegradstab.2015.09.013CrossRefGoogle Scholar
  115. 115.
    Wu J, Mather PT (2009) POSS polymers: physical properties and biomaterials applications. Polym Rev 49(1):25–63  https://doi.org/10.1080/15583720802656237CrossRefGoogle Scholar
  116. 116.
    Striolo A, McCabe C, Cummings PT (2005) Thermodynamic and transport properties of polyhedral oligomeric sislesquioxanes in poly(dimethylsiloxane). J. Phys. Chem. B 109(30):14300–14307.  https://doi.org/10.1021/jp045388pCrossRefPubMedGoogle Scholar
  117. 117.
    Striolo A, McCabe C, Cummings PT (2006) Organic-inorganic telechelic molecules: solution properties from simulations. J Chem Phys 125(10):104904.  https://doi.org/10.1063/1.2348641CrossRefPubMedGoogle Scholar
  118. 118.
    Ayandele E, Sarkar B, Alexandridis P (2012) Polyhedral oligomeric silsesquioxane (POSS)-containing polymer nanocomposites. Nanomaterials 2(4):445–475.  https://doi.org/10.3390/nano2040445CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    Bourbigot S, Turf T, Bellayer S, Duquesne S (2009) Polyhedral oligomeric silsesquioxane as flame retardant for thermoplastic polyurethane. Polym Degrad Stab 94:1230–1237.  https://doi.org/10.1016/j.polymdegradstab.2009.04.016CrossRefGoogle Scholar
  120. 120.
    Majka TM, Raftopoulos KN, Pielichowski K (2018) The influence of POSS nanoparticles on selected thermal properties of polyurethane-based hybrids. J Therm Anal Calorim 133(1):289–301.  https://doi.org/10.1007/s10973-017-6942-8CrossRefGoogle Scholar
  121. 121.
    Monticelli O, Fina A, Cavallo D, Gioffredi E et al (2013) On a novel method to synthesize POSS-based hybrids: an example of the preparation of TPU based system. Express Polym Lett 7(12):966–973.  https://doi.org/10.3144/expresspolymlett.2013.95CrossRefGoogle Scholar
  122. 122.
    Gu SY, Jin SP, Liu LL (2015) Polyurethane/polyhedral oligomeric silsesquioxane shape memory nanocomposites with low trigger temperatur and quick response. J Polym Res 22:142.  https://doi.org/10.1007/s10965-015-0779-2CrossRefGoogle Scholar
  123. 123.
    Koutsoumpis S, Raftopoulos KN, Jancia M, Pagacz J et al (2016) POSS moieties with PEG vertex groups as diluent in polyurethane elastomers: morphology and phase separation. Macromolecules 49(17):6507–6517.  https://doi.org/10.1021/acs.macromol.6b01394CrossRefGoogle Scholar
  124. 124.
    Gnanasekaran D, Walter PA, Parveen AA, Reddy BSR (2013) Polyhedral oligomeric silsesquioxane-based fluoroimide-containing poly(urethane-imide) hybrid membranes: synthesis, characterization and gas-transport properties. Sep Purif Technol 111:108–118.  https://doi.org/10.1016/j.seppur.2013.03.035CrossRefGoogle Scholar
  125. 125.
    Song J, Chen G, Wu G, Cai C et al (2001) Thermal and dynamic mechanical properties of epoxy resin/poly(urethane-imide)/polyhedral oligomeric silsesquioxane nanocomposites. Polym Adv Technol 22(12):2069–2074CrossRefGoogle Scholar
  126. 126.
    Bourbigot S., Duquesne S., Fontaine G., Bellayer S et al. (2008) Characterization and reaction to fire of polymer nanocomposites with and without conventional flame retardants. Mol Cryst Liq Cryst 486(1): 325/1367–339/1381CrossRefGoogle Scholar
  127. 127.
    Fomenko AA, Gomza YP, Klepko VV, Gumenna MA et al (2009) Dielectric properties, conductivity and structure of urethane composites based on polyethylene glycol and polyhedral silsesquioxane. Polym J 31(2):137–143Google Scholar
  128. 128.
    Oaten M, Choudhury NR (2005) Synthesis and characterization of a POSS-urethane hybrid coating for use in the corrosion protection of metal. J Metastable Nanocrystalline Mater 23:231–234CrossRefGoogle Scholar
  129. 129.
    Imai G, Inada Y, Matsuura Y, Nagai A (2013) Radiation-curable compositions with good curability under oxygen, and their coated scratch-resistant articles. JP Patent 2013018848Google Scholar
  130. 130.
    Hebda E, Ozimek J, Raftopoulos KN, Michałowski S et al (2015) Synthesis and morphology of rigid polyurethane foams with POSS as pendant groups or chemical crosslinks. Polym Adv Technol 26(8):932–940.  https://doi.org/10.1002/pat.3504CrossRefGoogle Scholar
  131. 131.
    Schwab J, Lichtenhan J, Carr M, Chaffee K et al (1997) Hybrid nanoreinforced polyurethanes based on polyhedral oligomeric silsesquioxanes. Polym Mater Sci Eng 77:549–550Google Scholar
  132. 132.
    Efrat T, Dodiuk H, Kenig S, Mccarthy S (2006) Nanotailoring of polyurethane adhesive by polyhedral oligomeric silsesquioxane (POSS). J Adhes Sci Technol 20(12):1413–1430CrossRefGoogle Scholar
  133. 133.
    Jana SC, Duan Y, Wang X, Shinko A (2013) Chemical and engineering issues of functional polymer aerogels. In: Abstracts of papers of the American Chemical Society Spring Meeting, New Orleans, 7–11 April 2013Google Scholar
  134. 134.
    Xu J, Song J (2007) Biodegradable shape memory poly (ester-urethane) nanocomposites strengthened by polyhedral silsesquioxane (POSS) core. In: Abstracts of the 23th ACS National Meeting, Boston, 2007Google Scholar
  135. 135.
    Lai YS, Tsai CW, Yanga HW, Wang GP et al (2009) Structural and electrochemical properties of polyurethanes/polyhedral oligomeric silsesquioxanes (PU/POSS) hybrid coatings on aluminum alloys. Mater Chem Phys 117(1):91–98.  https://doi.org/10.1016/j.matchemphys.2009.05.006CrossRefGoogle Scholar
  136. 136.
    Wang X, Hu Y, Song L, Xing W et al (2011) UV-curable waterborne polyurethane acrylate modified with octavinyl POSS for weatherable coating applications. J Polym Res 18:721–729.  https://doi.org/10.1007/s10965-010-9468-3CrossRefGoogle Scholar
  137. 137.
    Devaux E, Rochery M, Bourbigot S (2002) Polyurethane/clay and polyurethane/POSS nanocomposites as flame retarded coating for polyester and cotton fabrics. Fire Mater 26(4–5):149–154.  https://doi.org/10.1002/fam.792CrossRefGoogle Scholar
  138. 138.
    Lakhani HA, Mel A, Seifalian AM (2015) The effect of TGF-β1 and BMP-4 on bone marrow-derived stem cell morphology on a novel bioabsorbable nanocomposite material. Artif Cells Nanomed Biotechnol 43(4):230–234CrossRefGoogle Scholar
  139. 139.
    Maqsood A, Hamilton G, Seifalian AM (2010) Viscoelastic behaviour of a small calibre vascular graft made from a POSS-nanocomposite. In Abstracts 2010 annual international conference of the IEEE engineering in medicine and biologyGoogle Scholar
  140. 140.
    Kannan R, Salacinski HJ, Sales KM, Butler PE et al (2006) The endothelialization of polyhedral oligomeric silsesquioxane nanocomposites: an in vitro study. Cell Biochem Biophys 45(2):129–136CrossRefGoogle Scholar
  141. 141.
    Guo YL, Wang W, Otaigbe JU (2010) Biocompatibility of synthetic poly(ester urethane)/polyhedral oligomeric silsesquioxane matrices with embryonic stem cell proliferation and differentiation. J Tissue Eng Regen Med 4(7):553–564CrossRefGoogle Scholar
  142. 142.
    Wu J, Gu X, Mather PT (2010) Biostable multiblock thermoplastic polyurethanes incorporating poly(ε-caprolactone) and polyhedral oligomeric silsesquioxane (POSS). Trans Annu Meet Soc Biomater 1(84)Google Scholar
  143. 143.
    Gupta A, Vara DS, Punshon G, Sales KM et al (2009) In vitro small intestinal epithelial cell growth on a nanocomposite polycaprolactone scaffold. Biotechnol Appl Biochem 54(4):221–229CrossRefGoogle Scholar
  144. 144.
    Kannan RY, Salacinski HJ, Ghanavi JE, Narula A (2007) Silsesquioxane nanocomposites as tissue implants. Plast Reconstr Surg 119(6):1653–1662.  https://doi.org/10.1097/01.prs.0000246404.53831.4cCrossRefPubMedGoogle Scholar
  145. 145.
    Mel A, Chaloupka K, Malam Y, Darbyshire A et al. (2012) A silver nanocomposite biomaterial for blood-contacting implants. J Biomed Mater Res Part A 100(9)Google Scholar
  146. 146.
    Sedaghati T, Jell G, Seifalian A (2014) Investigation of Schwann cell behaviour on RGD-functionalised bioabsorbable nanocomposite for peripheral nerve regeneration. N Biotechnol 31(3):203–213CrossRefGoogle Scholar
  147. 147.
    Mel A, Punshon G, Ramesh B, Sarkar S et al. (2009) In situ endothelialisation potential of a biofunctionalised nanocomposite biomaterial-based small diameter bypass graft. Biomed Mater Eng 19(4–5):317–331.  https://doi.org/10.3233/bme-2009-0597
  148. 148.
    Adwan H, Fuller B, Seldon C, Davidson B et al (2013) Modifying three-dimensional scaffolds from novel nanocomposite materials using dissolvable porogen particles for use in liver tissue engineering. J Biomater Appl 28(2):250–261CrossRefGoogle Scholar
  149. 149.
    Antoniadou EV, Ahmad RK, Jackman RB, Seifalian AM (2011) Next generation brain implant coatings and nerve regeneration via novel conductive nanocomposite development. In: 2011 annual international conference of the IEEE engineering in medicine and biology society, 2011Google Scholar
  150. 150.
    Tan A, Madani S, Rajadas J, Pastorin G et al (2012) Synergistic photothermal ablative effects of functionalizing carbon nanotubes with a POSS-PCU nanocomposite polimer. J Nanobiotechnology 10(1):34–42CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  1. 1.Department of Chemistry and Technology of PolymersCracow University of TechnologyKrakówPoland

Personalised recommendations