Understanding Taxi Travel Demand Patterns Through Floating Car Data

  • Agostino NuzzoloEmail author
  • Antonio Comi
  • Enrica Papa
  • Antonio Polimeni
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 879)


This paper analyses the current structure of taxi service use in Rome, processing taxi Floating Car Data (FCD). The methodology used to pass from the original data to data useful for the demand analyses is described. Further, the patterns of within-day and day-to-day service demand are reported, considering the origin, the destination and other characteristics of the trips (e.g. travel time). The analyses reported in the paper can help the definition of space-temporal characteristics of future Shared Autonomous Electrical Vehicles (SAEVs) demand in mobility scenarios.


Taxi demand Travel demand Floating car data 



The authors want to thank Luis Moreira-Matias for the help in data retrieval and Claudia Proietti for the support in data elaboration.


  1. 1.
    Nuzzolo, A., Persia, L., Comi, A., Polimeni, A.: Shared autonomous electrical vehicles and urban mobility: a vision for Rome in 2035. In: Nathanail, E., Karakikes, I.D. (eds.) CSUM 2018. AISC, vol. 879, pp. 772–779. Springer, Cham (2019). Scholar
  2. 2.
    Bischoff, J., Maciejewski, M., Sohr, A.: Analysis of Berlin’s taxi services by exploring GPS traces. In: Proceedings of the International Conference on Models and Technologies for Intelligent Transportation System (2015)Google Scholar
  3. 3.
    Yang, Z., Franz, M.L., Zhu, S., Mahmoudi, J., Nasri, A., Zhang, L.: Analysis of Washington, DC taxi demand using GPS and land-use data. J. Transp. Geogr. 66, 35–44 (2018)CrossRefGoogle Scholar
  4. 4.
    Tang, J., Liu, F., Wang, Y., Wang, H.: Uncovering urban human mobility from large scale taxi GPS data. Physica A. Stat. Mech. Appl. 438, 140–153 (2015)CrossRefGoogle Scholar
  5. 5.
    Liu, X., Gong, L., Gong, Y., Liu, Y.: Revealing travel patterns and city structure with taxi trip data. J. Transp. Geogr. 43, 78–90 (2015)CrossRefGoogle Scholar
  6. 6.
    Ferreira, N., Poco, J., Vo, H.T., Freire, J., Silva, C.T.: Visual exploration of big spatio-temporal urban data: a study of New York City taxi trips. IEEE Trans. Vis. Comput. Graph. 19(12), 2149–2158 (2013)CrossRefGoogle Scholar
  7. 7.
    Jianqin, Z., Peiyuan, Q., Yingchao, D., Mingyi, D., Feng, L.: A space-time visualization analysis method for taxi operation in Beijing. J. Vis. Lang. Comput. 31(A), 1–8 (2015)CrossRefGoogle Scholar
  8. 8.
    Cai, H., Zhan, X., Zhu, J., Jia, X., Chiu, A.S.F., Xu, M.: Understanding taxi travel patterns. Physica A. Stat. Mech. Appl. 457, 590–597 (2016)CrossRefGoogle Scholar
  9. 9.
    Wang, W., Pan, L., Yuan, N., Zhang, S., Liu, D.: A comparative analysis of intra-city human mobility by taxi. Physica A. Stat. Mech. Appl. 420, 134–147 (2015)CrossRefGoogle Scholar
  10. 10.
    Bracciale L., Bonola M., Loreti P., Bianchi G., Amici R., Rabuffi A.: CRAWDAD dataset roma/taxi. Accessed 02 Feb 2018

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Enterprise EngineeringUniversity of Rome Tor VergataRomeItaly
  2. 2.University of WestminsterLondonUK

Personalised recommendations