Grass-Root Enterprise Modeling: Issues and Potentials of Retrieving Models from Powerpoint

  • Achim Reiz
  • Kurt Sandkuhl
  • Alexander Smirnov
  • Nikolay Shilov
Conference paper
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 335)


Enterprise modeling (EM) is an established practice in many organizations, but the majority of stakeholders in organizations who produce content relevant for EM use drawing or presentation tools instead of formalized EM techniques. The model-like content of such drawings or presentations often is very valuable for enterprises which calls for a way of integrating it with “real” models and other structured knowledge sources in organizations. This paper investigates how the model-like content of Powerpoint presentations can be extracted and transformed to EM. The main contributions of the paper are (a) an approach for model extraction from Powerpoint, (b) identification of heterogeneities to be tackled during the extraction process and (c) a prototype implementation demonstrating the approach based on ADO.xx.


Enterprise modeling Grass-root modeling Information extraction 



The research was supported partly by projects funded by grants # 18-07-01201 and 18-07-01272 of the Russian Foundation for Basic Research, and by Government of Russian Federation, Grant 08-08.


  1. 1.
    Wortmann, J., Hegge, H., Goossenaerts, J.: Understanding enterprise modelling from product modelling. Product. Plann. Control 12(3) (2001)CrossRefGoogle Scholar
  2. 2.
    Lillehagen, F., Krogstie, J.: Active Knowledge Modelling. Springer, Heidelberg (2008)Google Scholar
  3. 3.
    Wesenberg, H.: Enterprise modeling in an agile world. In: Johannesson, P., Krogstie, J., Opdahl, A.L. (eds.) PoEM 2011. LNBIP, vol. 92, pp. 126–130. Springer, Heidelberg (2011). Scholar
  4. 4.
    Stirna, J., Persson, A., Sandkuhl, K.: Participative enterprise modeling: experiences and recommendations. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) International Conference on Advanced Information Systems Engineering. CAiSE 2007. Lecture Notes in Computer Science, vol. 4495, pp. 546–560. Springer, Berlin, Heidelberg (2007)Google Scholar
  5. 5.
    Sandkuhl, K., et al.: Enterprise modelling for the masses – from elitist discipline to common practice. In: Horkoff, J., Jeusfeld, M.A., Persson, A. (eds.) PoEM 2016. LNBIP, vol. 267, pp. 225–240. Springer, Cham (2016). Scholar
  6. 6.
    Sandkuhl, K. et al.: From expert discipline to common practice: a vision and research agenda for extending the reach of enterprise modeling. BISE 60(1), 69–80 (2018)CrossRefGoogle Scholar
  7. 7.
    Sandkuhl, K., Stirna, J., Persson, A., Wißotzki, M.: Enterprise modeling – tackling business challenges with the 4EM method. Springer, Heidelberg (2014). ISBN 978-3-662-43724-7SGoogle Scholar
  8. 8.
    Larkin, J., Simon, H.: Why a diagram is (sometimes) worth ten thousand words. Cognit. Sci. 11(1), 65–100 (1987)CrossRefGoogle Scholar
  9. 9.
    Petre, M.: Why looking isn’t always seeing: Readership skills and graphical programming. Commun. ACM 38(6), 33–44 (1995)CrossRefGoogle Scholar
  10. 10.
    Mayer, R.E., Moreno, R.: Nine Ways to reduce cognitive load in mul-timedia learning. Educ. Psychol. 38(1), 43–52 (2003)CrossRefGoogle Scholar
  11. 11.
    Moody, D.: The Physics of Notations. IIEEE Trans. Softw. Eng. 35(6), 756–779 (2009)CrossRefGoogle Scholar
  12. 12.
    Harel, D., Rumpe, B.: Meaningful modeling: what’s the semantics of “semantics”? Computer 37(10), 64–72 (2004)CrossRefGoogle Scholar
  13. 13.
    Datta, R., Joshi, D., Li, J., Wang, J.Z.: Image retrieval. ACM Comput. Surv. 40(2), 1–60 (2008)CrossRefGoogle Scholar
  14. 14.
    Yu, Y., Samal, A., Seth, S.: A system for recognizing a large class of engineering drawings - document analysis and recognition. In: Proceedings of the Third International Conference on. IEEE (1995)Google Scholar
  15. 15.
    Lladós, J., Kwon, Y.-B.: LNCS 3088 - Graphics recognition. Recent advances and perspectivesGoogle Scholar
  16. 16.
    Li, S.Z., Jain, A.K.: Encyclopedia of Biometrics. Springer, New York (2009)CrossRefGoogle Scholar
  17. 17.
    Ojha, U., Adhikari, U., Singh, D.K.: Image Annotation using Deep Learning: A Review, pp. 1–5Google Scholar
  18. 18.
    Kozielski, M., Doetsch, P., Hamdani, M., Ney, H.: Multilingual off-line handwriting recognition in real-world images. In: 2014 11th IAPR International Workshop on Document Analysis Systems, Tours, France, pp. 121–125 (2014)Google Scholar
  19. 19.
    Blostein, D.: General diagram-recognition methodologies: methods and applications. In: Kasturi, R., Tombre, K. (eds.) Graphics Recognition Methods and Applications. GREC 1995. Lecture Notes in Computer Science. University Park, PA, USA, 1995 Selected Papers, vol. 1072, pp. 106–122 (1996)Google Scholar
  20. 20.
    Sas, J., Markowska-Kaczmar, U.: Logical Structure Recognition of Diagram Images, pp. 215–224 (2015)Google Scholar
  21. 21.
    Lemaitre, A., Mouchère, H., Camillerapp, J., Coüasnon, B.: Interest of syntactic knowledge for on-line flowchart recognitionGoogle Scholar
  22. 22.
    He, K., Zhang, X., Ren, S., Sun, J.: Deep Residual Learning for Image Recognition, pp. 770–778 (2016)Google Scholar
  23. 23.
    Mukherjee, D., Dhoolia, P., Sinha, S., Rembert, A.J., Gowri Nanda, M.: From informal process diagrams to formal process models. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 145–161. Springer, Heidelberg (2010). Scholar
  24. 24.
    Fill, H.-G.: Bridging pictorial and model-based creation of legal visualizations: the PICTMOD method. IRIS 2015, Jusletter IT, 26 February 2015. ISSN 1664-848XGoogle Scholar
  25. 25.
    Ciriello, R., Richter, A., Schwabe, G.: PowerPoint use and misuse in digital innovation. In: AIS Electronic Library (2015).
  26. 26.
    Bjekovic, M., Sottet, J., Favre, J., Proper, H.A.: A framework for natural enterprise modelling. In: 2013 IEEE 15th Conference on Business Informatics, pp. 79–84Google Scholar

Copyright information

© IFIP International Federation for Information Processing 2018

Authors and Affiliations

  • Achim Reiz
    • 1
  • Kurt Sandkuhl
    • 1
  • Alexander Smirnov
    • 2
  • Nikolay Shilov
    • 3
  1. 1.Rostock UniversityRostockGermany
  2. 2.ITMO UniversitySt. PetersburgRussia
  3. 3.St. Petersburg Institute of Informatics and AutomationSt. PetersburgRussia

Personalised recommendations