Advertisement

Synthesis of Mg–Zn–Ca Alloy by the Spark Plasma Sintering

  • Sabina Lesz
  • Joanna Kraczla
  • Ryszard Nowosielski
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 98)

Abstract

Mechanical alloying (MA) and spark plasma sintering (SPS) was employed to synthesize the Mg60Zn35Ca5 alloy. SPS, which is also known as the field-assisted sintering technique, plasma-activated sintering, pulsed electric current sintering, or plasma pressure-compaction, appears to be promising for manufacturing a biodegradable Mg60Zn35Ca5 alloy. SPS is a sintering technology that utilizes Joule heating via a pulsed electric current to achieve densification. SPS allows very fast heating and cooling rates, very short holding time, and the possibility of obtaining fully dense samples at comparatively low sintering temperatures, typically a few hundred degrees lower than normal hot pressing. The Joule heating could lead to further improved densification via localized plastic flow at the necks of connected particles during sintering. The structure and compressive strength of the Mg60Zn35Ca5 alloy were investigated. In the X-ray diffraction (XRD) patterns of the representative Mg60Zn35Ca5 powder after 13 h of MA, a broad diffraction peak corresponding to the amorphous phase is noticed. The results by XRD show that the Mg60Zn35Ca5 alloy after sintering has a multiphase structure. The investigated alloy shows a slightly higher compressive strength (264–300 MPa) compared to the crystalline Mg-based alloy (250 MPa) and exhibits properties appropriate for medical applications.

Keywords

Magnesium alloy Spark plasma sintering (SPS) X-ray diffraction (XRD) Scanning electron microscopy (SEM) 

Notes

Acknowledgements

This work was financially supported with statutory funds of Faculty of Mechanical Engineering of Silesian University of Technology in 2018.

References

  1. 1.
    Persaud-Sharma, D., McGoron, A.: Biodegradable magnesium alloys: a review of material development and applications. J. Biomim. Biomater. Tissue Eng. 12, 25–39 (2012)CrossRefGoogle Scholar
  2. 2.
    Plaass, C., Falck, C., Ettinger, S., Sonnow, L., Calderone, F., Weizbauer, A., Reifenrath, J., Claassen, L., Waizy, H., Daniilidis, K., Stukenborg-Colsman, C., Windhagen, H.: Bioabsorbable magnesium versus standard titanium compression screws for fixation of distal metatarsal osteotomies—3 year results of a randomized clinical trial. J. Orthop. Sci. 23(2), 321–327 (2018)CrossRefGoogle Scholar
  3. 3.
    Babilas, R., Bajorek, A., Simka, W., Babilas, D.: Study on corrosion behavior of Mg-based bulk metallic glasses in NaCl solution. Electrochim. Acta 209, 632–642 (2016)CrossRefGoogle Scholar
  4. 4.
    Staiger, M.P., Pietak, A.M., Huadmai, J., Dias, G.: Magnesium and its alloys as orthopedic biomaterials. Biomaterials 27, 1728–1734 (2006)CrossRefGoogle Scholar
  5. 5.
    Zheng, Y.F., Gu, X.N., Witte, F.: Biodegradable metals. Mater. Sci. Eng. Rep. 77, 1–34 (2014)CrossRefGoogle Scholar
  6. 6.
    Zheng, Y.F., Gu, X.N., Xi, Y.L., Chai, D.L.: In vitro degradation and cytotoxicity of Mg/Ca composites produced by powder metallurgy. Acta Biomater. 6, 1783–1791 (2010)CrossRefGoogle Scholar
  7. 7.
    Nowosielski, R., Cesarz-Andraczke, K., Sakiewicz, P., Maciej, A., Jakóbik-Kolon, A., Babilas, R.: Corrosion of biocompatible Mg66+xZn30-xCa4 (x=0.2) bulk metallic glasses. Arch. Metall. Mater. 61(2), 807–810 (2016)Google Scholar
  8. 8.
    Brar, H.S., Platt, M.O., Sarntinoranont, M., Martin, P.I., Manuel, M.V.: Magnesium as a biodegradable and bioabsorbable material for medical implants. JOM 61(9), 31–34 (2009)CrossRefGoogle Scholar
  9. 9.
    Gu, X.N., Zheng, Y.F.: A review on magnesium alloys as biodegradable materials. Front. Mater. Sci. China 4(2), 111–115 (2010)CrossRefGoogle Scholar
  10. 10.
    Hartwig, A.: Role of magnesium in genomic stability. Mutat. Res. 475, 113–121 (2001)CrossRefGoogle Scholar
  11. 11.
    Saris, N.E., Mervaala, E., Karppanen, H., Khawaja, J.A., Lewenstam, A.: Magnesium: an update on physiological, clinical and analytical aspects. Clin. Chim. Acta 294(1–2), 1–26 (2000)CrossRefGoogle Scholar
  12. 12.
    Lavernia, E.J., Gomez, E., Grant, N.J.: The structures and properties of Mg-Al-Zr and Mg-Zn-Zr alloys produced by liquid dynamic compaction. Mater. Sci. Eng. 95, 225–236 (1987)CrossRefGoogle Scholar
  13. 13.
    Luo, A., Pekguleryuz, M.O.: Cast magnesium alloys for elevated temperature applications. J. Mater. Sci. 29, 5259–5271 (994)Google Scholar
  14. 14.
    Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K.U., Willumeit, R., Feyerabend, F.: Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 12(5–6), 63–72 (2008)CrossRefGoogle Scholar
  15. 15.
    Zhang, S., Li, J., Song, Y., Zhao, C., Zhang, X., Xie, C., Bian, Y.: In vitro degradation, hemolysis and MC3T3-E1 cell adhesion of biodegradable Mg–Zn alloy. Mater. Sci. Eng. C 29(6), 1907–1912 (2009)CrossRefGoogle Scholar
  16. 16.
    Zhang, S., Zhang, X., Zhao, C., Li, J., Song, Y., Xie, C., Bian, Y.: Research on an Mg–Zn alloy as a degradable biomaterial. Acta Biomater. 6(2), 626–640 (2010)Google Scholar
  17. 17.
    Wang, Y.B., Xie, X.H., Li, H.F., Wang, X.L., Zhao, M.Z., Zhang, E.W., Qin, L.: Biodegradable CaMgZn bulk metallic glass for potential skeletal application. Acta Biomater. 7(8), 3196–3208 (2011)Google Scholar
  18. 18.
    Gonzalez, S., Pellicer, E., Fornell, J., Blanquer, A., Barrios, L., Ibanez, E., Sort, J.: Improved mechanical performance and delayed corrosion phenomena in biodegradable Mg–Zn–Ca alloys through Pd-alloying. J. Mech. Behav. Biomed. Mater. 6, 53–62 (2012)Google Scholar
  19. 19.
    Hänzi, A.C., Dalla Torre, F.H., Sologubenko, A.S., Gunde, P., Schmid-Fetzer, R., Kuehlein, M., Löffler, J.F., Uggowitzer, P.J.: Design strategy for microalloyed ultra-ductile magnesium alloys. Philos. Mag. Lett. 89, 377–390 (2009)CrossRefGoogle Scholar
  20. 20.
    Inoue, A.: Stabilization of metallic supercooled liquid and bulk amorphous alloys. Acta Mater. 48, 279–306 (2000)CrossRefGoogle Scholar
  21. 21.
    Fousova, M., Capek, J., Vojtech, D.: Magnesium-Zinc alloy prepared by mechanical alloying and spark plasma sintering. In: Metal Conference, Brno, Czech Republic, 21–23 May 2014Google Scholar
  22. 22.
    Suryanarayana, C.: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001)CrossRefGoogle Scholar
  23. 23.
    Zhao, Y.Y., Ma, E., Xu, J.: Reliability of compressive fracture strength of Mg–Zn–Ca bulk metallic glasses: flaw sensitivity and Weibull statistics. Scr. Mater. 58, 496–499 (2008)CrossRefGoogle Scholar
  24. 24.
    Calka, A., Radlinski, A.P.: Amorphization of MgZn alloys by mechanical alloying. Mater. Sci. Eng. A 118, 131–135 (1989)CrossRefGoogle Scholar
  25. 25.
    Rousselot, S., Bichat, M.P., Guay, D., Roue, L.: Structure and electrochemical behaviour of metastable Mg50Ti50 alloy prepared by ball milling. J. Power Sources 175, 621–624 (2008)CrossRefGoogle Scholar
  26. 26.
    Lee, P.Y., Kao, M.C., Lin, C.K., Huang, J.C.: Mg-Y-Cu bulk metallic glass prepared by mechanical alloying and vacuum hot-pressing. Intermetallics 14, 994–999 (2006)CrossRefGoogle Scholar
  27. 27.
    El-Rahman, S.S.: Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). Pharmacol. Res. 47(3), 189–194 (2003)CrossRefGoogle Scholar
  28. 28.
    Bell, S., Davis, B., Javaid, A., Essadiqi, E.: Final report on effect of impurities in magnesium. Technical Report No. 2005–29(CF) (2006).  https://doi.org/10.13140/rg.2.2.35126.50248
  29. 29.
    Südholza, A.D., Kirkland, N.T., Buchheit, R.G., Birbilis, N.: Electrochemical properties of intermetallic phases and common impurity elements in magnesium alloys. Electrochem. Solid-State Lett. 14(2), C5–C7 (2011)CrossRefGoogle Scholar
  30. 30.
    Nygren, M., Shen, Z.: On the preparation of bio, nano and structural ceramics and composites by spark plasma sintering. Solid State Sci. 5, 125–131 (2003)CrossRefGoogle Scholar
  31. 31.
    Tokita, M.: Trends in advanced SPS spark plasma sintering systems and technology. J. Soc. Powder Technol. Jpn. 30, 790–804 (1993)CrossRefGoogle Scholar
  32. 32.
    Groza, J.R., Zavaliangos, A.: Sintering activation by external electrical field. Mater. Sci. Eng. A 287, 171–177 (2000)CrossRefGoogle Scholar
  33. 33.
    Lesz, S., Kremzer, M., Gołombek, K., Nowosielski, R.: Influence of milling time on amorphization of Mg-Zn-Ca powders synthesized by mechanical alloying technique. Arch. Metall. Mater. 63(2), 839–845 (2018)Google Scholar
  34. 34.
    Hanawalt, J.D., Rinn, H.W.: Identification of crystalline materials: classification and use of X-ray diffraction patterns. Powder Diffr. 1, 2–6 (1986)Google Scholar
  35. 35.
    Hanawalt, J.D.: Manual search/match methods for powder diffraction in 1986. Powder Diffr. 1, 7–13 (1986)CrossRefGoogle Scholar
  36. 36.
    PN-H-04320: Static test of metal compression (1957)Google Scholar
  37. 37.
    Dewidar, M.: Influence of processing parameters and sintering atmosphere on the mechanical properties and microstructure of porous 316L stainless steel for possible hard-tissue applications. Int. J. Mech. Mechatron. Eng. IJMME-IJENS 12(1), 10–24 (2012)Google Scholar
  38. 38.
    Zhang, Y., Zhang, M.: Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. J. Biomed. Mater. Res. 61(1), 1–8 (2002)CrossRefGoogle Scholar
  39. 39.
    Zberg, B., Uggowitzer, P.J., Loffler, J.F.: MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat. Mater. 8, 887–891 (2009)CrossRefGoogle Scholar
  40. 40.
    Nowosielski, R., Babilas, R., Cesarz-Andreczke, K., Gawlas-Mucha, A., Lesz, S., Sakiewicz, P.: Resorbable Materials for Medical Implants. Silesian University of Technology Press, Gliwice (2017). (in Polish)Google Scholar
  41. 41.
    Lesz, S., Kraczla, J., Nowosielski, R.: Structure and compression strength characteristics of the sintered Mg–Zn–Ca–Gd alloy for medical applications. Arch. Civ. Mech. Eng. 18(4), 1288–1299 (2018)CrossRefGoogle Scholar
  42. 42.
    DeGarmo, P.E.: Materials and Processes in Manufacturing, 5th edn. Collin Macmillan, New York (1979)Google Scholar
  43. 43.
    Sunil, B.R., Ganapathy, C., Kumar, T.S., Chakkingal, U.: Processing and mechanical behavior of lamellar structured degradable magnesium-hydroxyapatite implants. J. Mech. Behav. Biomed. Mater. 40, 178–189 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Sabina Lesz
    • 1
  • Joanna Kraczla
    • 1
  • Ryszard Nowosielski
    • 1
  1. 1.Institute of Engineering Materials and Biomaterials, Silesian University of TechnologyGliwicePoland

Personalised recommendations