Advertisement

Characterization and Formability Analysis of a Composite Sandwich Metal-Polymer Material

  • S. S. MirandaEmail author
  • A. D. Santos
  • R. L. Amaral
  • L. T. Malheiro
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 98)

Abstract

In recent years, extensive research was carried out on the development at lightweight materials, combining metals with polymers, so-called composite sandwich metal/polymer materials, in order to face the safety and environmental requirements. These materials are composed by metal sheet skins with reduced thickness and a polymer core. However, the combination of steel with other materials poses new challenges, due to their new or different behavior and non-homogeneity of deformation, needing also a different approach to material characterization and formability analysis. This contribution presents the issues concerning material characterization and behavior for this kind of materials in addition to using and proposing appropriate approaches for traditional testing methodology. Fundamental mechanical characterization is obtained by using, not only the uniaxial tensile test, but including also hydraulic bulge test. Formability characterization for this hybrid material includes hole expansion tests and deep drawing Erichsen test, being also discussed the adequacy and differences between homogeneous and composite material results. Numerical simulations were performed to study the influence of tool geometry during the hole expansion test. For the HET to be adequate for both of types of materials, heterogeneous hybrid material and homogenous metal sheets, the increase of the die or punch radius dimensions demonstrated to be the best option to get the material formability behavior without compromising the adequacy of selected tests.

Keywords

Composite sandwich metal-polymer Sheet metal forming Formability Deep drawing Hole expansion test 

Notes

Acknowledgements

Authors gratefully acknowledge the funding of SciTech, R&D project NORTE-01-0145-FEDER-000022 co-financed by NORTE2020, through FEDER and the financial support of the Portuguese Foundation for Science and Technology (FCT) under project P2020-PTDC/EMS-TEC/6400/2014 (POCI-01-0145-FEDER-016876) by UE/FEDER through the program COMPETE 2020. The third author is also grateful to the FCT for the Doctoral grant SFRH/BD/119362/2016 under the program POCH, co-financed by the European Social Fund (FSE) and Portuguese National Funds from MCTES.

References

  1. 1.
    Keller, S., Kimchi, M.: Advanced High-Strength Steels Application Guidelines. World AutoSteel, Version 5.0 (2014)Google Scholar
  2. 2.
    Santos, A.D., Ferreira Duarte, J., Barata da Rocha, A.: Tecnologia da embutidura. Coleção Tecnologia Mecânica, vol. 3, INEGI (2005)Google Scholar
  3. 3.
    Dickinson, R.C., Monterastelli, M.R., Vydra, E.J: Development of Materials for Noise and Temperature Control, SAE Technical Paper (1995)Google Scholar
  4. 4.
    Rao, M.D.: Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes. J. Sound Vib. 262, 457–474 (2003)CrossRefGoogle Scholar
  5. 5.
    Seidlitz, H., Gerstenberger, C.: High-performance lightweight structures with fiber reinforced thermoplastics and structured metal thin sheets. J. Mater. Sci. 4 (2015)Google Scholar
  6. 6.
    Seidlitz, H., Kroll, L.: High-strength mixed constructions with thermoplastic fibre composites and metals. Join. Plast. 8(2), 106–111 (2014)Google Scholar
  7. 7.
    Döhler, C., Hälsig, A.: Energy-efficient joining technologies to realise dissimilar joints of metal and fibre-reinforced plastics. In: Neugebauer, R., Drossel, W.G. (eds.) 3rd International Colloqium of the Cluster of Excellence eniPROD, pp. 447–459. Chemnitz: Verlag Wissenschaftkiche Scripten, (2014)Google Scholar
  8. 8.
    Moreira, R.A.S., Sousa, R.J.A., Valente, R.A.F.: A solid shell layerwise finite element for non-linear geometric and material analysis. Compos. Struct. 92(15), 7–23 (2010)Google Scholar
  9. 9.
    Sokolova, O., Carradò, A., Palkowski, H.: Metal-polymer-metal sandwiches with local metal reinforcements: a study on formability by deep drawing and bending. Compos. Struct. 94, 1–7 (2011)CrossRefGoogle Scholar
  10. 10.
    ASTM Standard E8 M, Standard Test Methods for Tension Testing of Metallic Materials. ASTM International (2016)Google Scholar
  11. 11.
    Harhash, M., Palkowski, H., Carradò, A.: Forming potential of low-density laminates. In: Wiche, H., Wesling, V., Teichmann, C. (eds.) Niedersächsisches Symposium Materialtechnik, pp. 53–60. Clausthal-Zellerfeld (2015)Google Scholar
  12. 12.
    Harhash, M., Sokolova, O., Carradó, A., Palkwski, H.: Mechanical properties and forming behavior of laminated steel/polymer sandwich systems with local inlays—Part 1. Compos. Struct. 118, 112–120 (2014)Google Scholar
  13. 13.
    Pimentel, A.M., Alves, J.L., Merendeiro, N.M., Oliveira, D.: Hybrix: experimental characterization of a micro-sandwich sheet. J. Mater. Process. Technol. 234, 84–94 (2016)CrossRefGoogle Scholar
  14. 14.
    Mamalis, A., Spentzas, K., Pantelelis, N., Manolakos, D., Ioannidi, M.: A new hybrid concept for sandwich structures. Compos. Struct. 83(4), 335–340 (2008)CrossRefGoogle Scholar
  15. 15.
    Mata, H., Natal Jorge, R., Santos, A.D., Parente, M., Valente, R., Fernandes, A.A.: Numerical and experimental study of the bulge test of sandwich shells with metal foam cores. In: ECCOMAS 2012—European Congress on Computational Methods in Applied Sciences and Engineering, Vienna, Austria, pp. 6199–6206 (2012)Google Scholar
  16. 16.
    Diehl, A., Staud, D., Engel, U.: Investigation of the mechanical behavior of thin metal sheets using the hydraulic bulge test. In: 4th International Conference on Multi Material Manufacture, pp. 195–198. Germany (2008)Google Scholar
  17. 17.
    Martins, B., Santos, A.D., Teixeira, P.: A study on the influence of different variables for determination of flow stress using hydraulic bulge test. Int. J. Mater. Eng. Innov. 4(2), 132–148 (2013)CrossRefGoogle Scholar
  18. 18.
    Reis, L.C., Oliveira, M.C., Santos, A.D., Fernandes, J.V.: On the determination of the work hardening curve using the bulge test. Int. J. Mech. Sci. 105, 158–181 (2016)CrossRefGoogle Scholar
  19. 19.
    Amaral, R.L., Santos, A.D., Sousa, J.A., Lopes, A.B.: The influence of microstructure on the mechanical behavior of dual phase steels. Adv. Struct. Mat. 65, 25–35 (2016). Springer International PublishingCrossRefGoogle Scholar
  20. 20.
    Amaral, R., Santos, A.D., Lopes, A.B.: Mechanical properties determination of dual-phase steels using uniaxial tensile and hydraulic bulge test. Ciência & Tecnologia dos Materiais 27, 239–243 (2017)CrossRefGoogle Scholar
  21. 21.
    Campos, H., Santos, A.D., Amaral, R.: Experimental and analytical evaluation of the stress/strain curves of AA5754T4 and AA6061T6 by hydraulic bulge test. Ciência & Tecnologia dos Materiais 29, 244–248 (2017)CrossRefGoogle Scholar
  22. 22.
    Malheiro, L.: Caracterização mecânica de materiais em chapa metálica e problemas de formabilidade em componentes para automóveis. Master thesis, Faculty of Engineering, University of Porto (2012)Google Scholar
  23. 23.
    Sadagopan, S., Urban, D.: Formability characterization of a new generation of high strength steels. AISI/DOE technology roadmap program (2003)Google Scholar
  24. 24.
    Siebel, E., Pomp, A.: Mitt. K. W. I. Für Eisenforschung, pp. 287–291 (1929)Google Scholar
  25. 25.
    Col, A., Jousserand, P.: Mechanisms involved in the hole expansion test. International Deep Draw Research Group, IDDRG 2008 International Conference, Olofström, Sweden (2008)Google Scholar
  26. 26.
    Paul, S.K., Mukherjee, M., Kundu, S., Chandra, S.: Prediction of hole expansion ratio for automotive grade steels. Comp. Mater. Sci. 89, 189–197 (2014)CrossRefGoogle Scholar
  27. 27.
    Silva, C.M.A., Alves, L.M., Nielsen, C.V., Atkins, A.G., Martins, P.A.F.: Failure by fracture in bulk metal forming. J. Mater. Process. Tech. 215, 287–299 (2015)CrossRefGoogle Scholar
  28. 28.
    ISO 16630, Metallic materials—Sheet and Strip— Hole Expansion test. ISO Standard (2017)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • S. S. Miranda
    • 1
    Email author
  • A. D. Santos
    • 1
    • 2
  • R. L. Amaral
    • 1
  • L. T. Malheiro
    • 3
  1. 1.INEGI, Institute of Science and Innovation in Mechanical and Industrial EngineeringPortoPortugal
  2. 2.FEUP, Faculty of EngineeringUniversity of PortoPortoPortugal
  3. 3.Inapal Metal SATrofaPortugal

Personalised recommendations