Advertisement

Mechanical Characterization of Film/Substrate Materials Using Nanoindentation Technique

  • Nadia ChakrounEmail author
  • Hedi Belhadjsalah
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 98)

Abstract

In the present paper, mechanical properties of multilayer coatings were investigated. To that end, an analytical model dedicated for characterizing the thin multilayer behaviors was considered. In this study, the nanoindentation tests on film/substrate material systems were systematically investigated using finite element modeling (FEM). Hence, the considered model of Mercier et al. is efficient for measuring meaningful mechanical properties of thin film materials up to a critical ratio Ef/Es = 1.18 (with Ef the Young’s modulus of the film and Es the Young’s modulus of the substrate). But, for Ef/Es ≥ 1.18 a divergence of the model was observed. The main error is caused by a wrong estimation of the contact surface Ac between the indenter tip and the film surface. As a matter of fact, for a soft film on a hard substrate (Ef/Es < 1.18) the deformation is almost localized at the film. However, for Ef/Es ≥ 1.18 the deformation spreads at the substrate which induces a wrong value of contact surface Ac.

Keywords

Thin films Nanoindentation Hard film Soft film Substrate effect 

References

  1. 1.
    Amaya-Roncancio, S., Restrepo-Parra, E., Devia-Narvaez, D.M., Arias-Mateus, D.F., Gómez-Hermida, M.M.: Molecular dynamics simulation of nanoindentation in Cr, Al layers and Al/ Cr bilayers, using a hard spherical nanoindenter. DYNA. 81, 102–107 (2014)Google Scholar
  2. 2.
    Azadi, M., Rouhaghdam, A.S., Ahangarani, S., Mofidi, H.H.: Mechanical behavior of TiN/TiC multilayer coatings fabricated by plasma assisted chemical vapor deposition on AISI H13 hot work tool steel. Surf. Coat. Technol. 245, 156–166 (2014)CrossRefGoogle Scholar
  3. 3.
    Chakroun, N., Tekaya, A., Belhadjsalah, H., Benameur, T.: Measuring elastic properties of the constituent multilayer coatings for different modulation periods. Int. J. Appl. Mech. 10 (2018)Google Scholar
  4. 4.
    Inui, N., Mochiji, K., Moritani, K.: A nondestructive method for probing mechanical properties of a thin film using impacts with nanoclusters. Int. J. Appl. Mech. 8, 1650041 (2016)CrossRefGoogle Scholar
  5. 5.
    Kumar, A., Zeng, K.: Alternative methods to extract the hardness and elastic modulus of thin films from nanoindentation load-displacement data. Int. J. Appl. Mech. 2, 41–68 (2010)CrossRefGoogle Scholar
  6. 6.
    Doerner, M.F., Nix, W.D.: A method for interpreting the data from depth-sensing indentation instruments (1986)Google Scholar
  7. 7.
    Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992)CrossRefGoogle Scholar
  8. 8.
    Jung, Y.G., Lawn, B.R., Martyniuk, M., Huang, H., Hu, X.Z.: Evaluation of elastic modulus and hardness of thin films by nanoindentation. J. Mater. Res. 19, 3076–3080 (2004)CrossRefGoogle Scholar
  9. 9.
    Bull, S.J.: A simple method for the assessment of the contact modulus for coated systems. Philos. Mag. 95, 1907–1927 (2015)CrossRefGoogle Scholar
  10. 10.
    Mercier, D., Mandrillon, V., Verdier, M., Brechet, Y.: Mesure de module d’Young d’un film mince à partir de mesures expérimentales de nanoindentation réalisées sur des systèmes multicouches. Matériaux Tech. 99, 169–178 (2011)CrossRefGoogle Scholar
  11. 11.
    Chakroun, N., Tekaya, A., Belhadjsalah, H., Benameur, T.: A new inverse analysis method for identifying the elastic properties of thin films considering thickness and substrate effects simultaneously. Int. J. Appl. Mech. 9, 1750096 (2017)CrossRefGoogle Scholar
  12. 12.
    Liao, Y., Zhou, Y., Huang, Y., Jiang, L.: Measuring elastic-plastic properties of thin films on elastic-plastic substrates by sharp indentation. Mech. Mater. 41, 308–318 (2009)CrossRefGoogle Scholar
  13. 13.
    Bec, S., Tonck, A., Georges, J.-M., Georges, E., Loubet, J.-L.: Improvements in the indentation method with a surface force apparatus. Philos. Mag. A 74, 1061–1072 (1996).  https://doi.org/10.1080/01418619608239707
  14. 14.
    ABAQUS Version 6.14, Dessault systèmes simulia corp., Providence, RI, USA (2014)Google Scholar
  15. 15.
    Jayaraman, S., Hahn, G.T., Oliver, W.C., Rubin, C.A., Bastias, P.C.: Determination of monotonic stress-strain curve of hard materials from ultra-low-load indentation tests. Int. J. Solids Struct. 35, 365–381 (1998)Google Scholar
  16. 16.
    Cheng, Y.T., Cheng, C.M.: Scaling, dimensional analysis, and indentation measurements. Mater. Sci. Eng. R Rep. 44, 91–150 (2004)CrossRefGoogle Scholar
  17. 17.
    Pelletier, H., Krier, J., Mille, P.: Characterization of mechanical properties of thin films using nanoindentation test. Mech. Mater. 38, 1182–1198 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Mechanical Engineering LaboratoryUniversity of MonastirMonastirTunisia

Personalised recommendations