Experimental Investigations of a MR Clutch for a Centrifugal Pump

  • A. I. BosiocEmail author
  • T. Ardelean
  • R. Szakal
  • S. Muntean
  • I. Borbath
  • L. Vékás
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 98)


A magneto-rheological clutch was designed and built in order to modify the speed of an axial rotor mounted in front of a centrifugal pump. The main goal by modifying the speed of the axial rotor is to increase the operating regimes with less cavitation and to uniform the flow at the inlet of the pump impeller. The magneto-rheological clutch is tested separately on a preliminary test rig, in order to analyse in detail, the working parameters (generated torque, the interior and exterior temperature). Also, the test rig serves testing different MR fluids available on the market as well as several MR fluids developed and characterized in our laboratory. The preliminary test rig consists in one fixed (2500 rpm) and one variable speed electric motors (2000–2500 rpm), a torque transducer (0–20 Nm), the magneto-rheological clutch, temperature sensors as well as a control and acquisition system. The aim of this study is to provide a first experimental evaluation of the magneto-rheological clutch designed and built for a special application. First, the paper presents the problem and our solution using the MRC. Second, we focus on the magneto-rheological clutch and the test rig; the magnetic and mechanical design of the clutch is presented, while for the test rig the operating conditions will be described. The third part analyses the results: the generated torque and power at different speeds, the interior and exterior temperature. The last section draws the conclusions.


MR clutch Mechanical–magnetic design Experimental investigation 



This work was supported by a grant of the Romanian Ministry of Research and Innovation, CNCS—UEFISCDI, project number PN-II-RU-TE-2014-4-1089 and mobility grant project number PN-III-P1-1.1-MC-2018-0423, within PNCDI III.


  1. 1.
    Rabinow, J.: The magnetic fluid clutch. AIEE Trans. 67, 1308–1315 (1948)Google Scholar
  2. 2.
    Olabi, A.G., Grunwald, A.: Design and application of magneto-rheological fluid. Mater. Des. 28, 2658–2664 (2007)CrossRefGoogle Scholar
  3. 3.
    Moskowitz, R.: Dynamic sealing with magnetic fluids. ASLE Trans. 18(2), 135–143 (1975)CrossRefGoogle Scholar
  4. 4.
    Bica, D., Balanean, F., Borbath, I., Boros, T.F., Galffy, D., Vekas, L.: Process for preparing composite magnetic fluids for magneto-fluidic rotary seals, for high pressures. Romania, Patent RO122725-B1 (1999)Google Scholar
  5. 5.
    Liang, Y., Alvarado, J., Iagnemma, K., Hosoi, A.E.: Dynamic sealing using magneto-rheological fluids. Appl. Phys. 1802.07912 (2018)Google Scholar
  6. 6.
    Popa, N.C., Rousseau, J.J., Siblini, A., Chatelon, J.P., Jamon, D., Royer, F., Robert, S., Choueikani, F.: Gas distribution control system using magnetic fluid sensors. Rom. Rep. Phys. 337–349(58) (2006)Google Scholar
  7. 7.
    Kaluvan, S., Thirumavalavan, V., Kim, S., Choi, S.-B.: A new magneto-rheological fluid actuator with application to active motion control. Sens. Actuators A 239, 166–173 (2016)CrossRefGoogle Scholar
  8. 8.
    Liţă, M., Popa, N.C., Velescu, C., Vékás, L.: Investigation of a magnetorheological fluid damper. IEEE Trans. Magn. 40(2), 469–472 (2004)CrossRefGoogle Scholar
  9. 9.
    Kazakov, Y.B., Morozov, N.A., Nesterov, S.A.: Development of models of the magnetorheological fluid damper. J. Magn. Magn. Mater. 431, 269–272 (2017)CrossRefGoogle Scholar
  10. 10.
    Sireteanu, T., Ghita, G., Stancioiu, D.: Fluide şi amortizoare magneto-reologice. Ed. Bren, Bucuresti, Romania (2005)Google Scholar
  11. 11.
    Ferfecki, P., Zapomel, J., Kozanek, J.: Analysis of the vibration attenuation of rotors supported by magnetorheological squeeze film dampers as a multiphysical finite element problem. Adv. Eng. Softw. 104, 1–11 (2017)CrossRefGoogle Scholar
  12. 12.
    Karakoc, K., Park, E., Suleman, A.: Design considerations for an automotive magnetorheological brake. Mechatronics 18, 434–447 (2008)CrossRefGoogle Scholar
  13. 13.
    Nguyen, Q.H., Choi, S.B.: Selection of magnetorheological brake types via optimal design considering maximum torque and constrained volume. Smart Mater. Struct. 21, 015012 (2012)CrossRefGoogle Scholar
  14. 14.
    Li, W.H., Du, H.: Design and experimental evaluation of a magnetorheological brake. Int. J. Adv. Manuf. Technol. 21, 508–515 (2033)CrossRefGoogle Scholar
  15. 15.
    Bose, H., Gerlach, T., Ehrlich, J.: Magnetorheological torque transmission devices with permanent magnets. J. Phys.: Conf. Ser. 412, 012050 (2013)Google Scholar
  16. 16.
    Bucchi, F., Forte, P., Frendo, F., Musolini, A., Rizzo, R.: A fail-safe magnetorheological clutch excited by permanent magnets for the disengagement of automotive auxiliaries. J. Intell. Mater. Syst. Struct. 25(16), 2102–2114 (2014)CrossRefGoogle Scholar
  17. 17.
    Rizzo, R., Musolino, A., Bucchi, F., Forte, P., Fredo, F.: A multi gap magnetorheological clutch with permanent magnet. Smart Mater. Struct. 075012 (2015)Google Scholar
  18. 18.
    Bucchi, F., Forte, P., Frendo, F.: Geometry optimisation of a magnetorheological clutch operated by coils. J. Mater. Des. Appl. 231(1–2), 100–112 (2017)Google Scholar
  19. 19.
    Kielan, P., Kowol, P., Pilch, Z.: Conception of the electronic controlled magnetorheological clutch. Electr. Rev. 87(3), 93–95 (2011)Google Scholar
  20. 20.
    Torocsik, D.: Some design issues of multi-plate magnetorheological clutches. Hung. J. Ind. Chem. 39(1), 41–44 (2011)Google Scholar
  21. 21.
    Muntean, S., Susan-Resiga, R.F., Bosioc, A.I., Constantin, S., Maxim, D., Tanasa, C., Vekas, L., Borbath, I., Anton, L.E.: Equipment to reduce the cavitational effects and to uniform the flow at pumps inlet. Patent application RO131578-A3 (2016)Google Scholar
  22. 22.
    Bosioc, A.I., Constantin, S., Muntean, S., Anton, L.E.: Numerical assessment of the flow field induced by an axial rotor with variable speed in a pump impeller. In: 19th International Seminar on Hydropower Plants, Vienna, Austria, in Wasserkraftlangen TU Wien, pp. 423–433. ISBN 978-3-9504338-07 (2016)Google Scholar
  23. 23.
    Bosioc, A.I., Beja, E., Muntean, S., Borbáth, I., Vekas, L.: Experimental investigations of MR fluids in air and water used for brakes and clutches. Mater. Des. Appl. 197–207 (2017). ISBN 978-3-319-50783-5Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • A. I. Bosioc
    • 1
    Email author
  • T. Ardelean
    • 1
  • R. Szakal
    • 1
  • S. Muntean
    • 1
    • 2
  • I. Borbath
    • 3
  • L. Vékás
    • 2
  1. 1.University Politehnica TimișoaraTimișoaraRomania
  2. 2.Romanian Academy - Timișoara BranchTimișoaraRomania
  3. 3.SC. Roseal S.A., Odorheiu SecuiescOdorheiu SecuiescRomania

Personalised recommendations