Advertisement

Design and Characterization of Porous Collagen/Gelatin/Hydroxyethyl Cellulose Matrices Containing Microspheres Based on κ-Carrageenan

  • J. Kozlowska
  • K. Pauter
  • J. Skopinska-Wisniewska
  • A. Sionkowska
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 98)

Abstract

Polymeric microspheres have a wide range of medical and cosmetic applications and synthesis of these microparticles is the subject of numerous studies. The strategy of incorporating polymer microspheres into three-dimensional matrices to construct controlled-release materials have been attracting increased attention in recent years. The aim of this study was to obtain new materials by means of incorporating polymer microparticles (containing Calendula officinalis flower extract) in the three-dimensional polymer matrix with a porous structure. The microspheres were produced from κ-carrageenan, κ-carrageenan with addition of locust bean gum or sorbitol by extrusion and 2-phase emulsion methods. In the next step, microspheres were incorporated into a collagen/gelatin/hydroxyethyl cellulose matrix and materials were cross-linked using EDC/NHS mixture. The mechanical properties (Young’s modulus) of the obtained materials were characterized. The porous polymeric matrices combined with κ-carrageenan microparticles may become the basis for a new cosmetic or dermatological formulation. The size of the microparticles, their composition and quantity have a significant influence on their mechanical properties.

Keywords

Microspheres Microencapsulation κ-carrageenan Calendula officinalis flower extract Polymeric matrices 

Notes

Acknowledgements

Financial support from National Science Centre (NCN, Poland) Grant no. UMO-2016/21/D/ST8/01705 is gratefully acknowledged.

References

  1. 1.
    Wang, Q., Li, J., Xu, T., Lu, X., Zhi, W., Weng, J.: Porous hydroxyapatite scaffolds containing dual microspheres based on poly(lactide-co-glycolide) and chitosan for bone regeneration. Mater. Lett. 188, 387–391 (2017)CrossRefGoogle Scholar
  2. 2.
    Mao, S., Guo, C., Shi, Y., Li, L.C.: Recent advances in polymeric microspheres for parenteral drug delivery—Part 2. Expert Opin. Drug Deliv. 9, 1209–1223 (2012)CrossRefGoogle Scholar
  3. 3.
    Hossain, K.M.Z., Patel, U., Ahmed, I.: Development of microspheres for biomedical applications: a review. Prog. Biomater. 4, 1–19 (2015)CrossRefGoogle Scholar
  4. 4.
    Jyothi, N.V., Prasanna, P.M., Sakarkar, S.N., Prabha, K.S., Ramaiah, P.S., Srawan, G.Y.: Microencapsulation techniques, factors influencing encapsulation efficiency. J. Microencapsul. 27, 187–197 (2010)CrossRefGoogle Scholar
  5. 5.
    Das, S.K., David, S.R.N., Rajabalaya, R., Mukhopadhyay, H.K., Halder, T., Palanisamy, M., Khanam, J.: Microencapsulation techniques and its practice. Int. J. Pharm. Pharm. Sci. 6, 1–23 (2011)Google Scholar
  6. 6.
    Devi, N., Sarmah, M., Khatun, B., Maji, T.: Encapsulation of active ingredients in polysaccharide-protein complex coacervates. Adv. Colloid Interface Sci. 239, 136–145 (2017)CrossRefGoogle Scholar
  7. 7.
    Midha, K., Nagpal, M., Arora, S.: Microspheres: a recent update. Int. J. Recent. Sci. Res. 8, 5859–5867 (2015)Google Scholar
  8. 8.
    Kozlowska, J., Stachowiak, N., Sionkowska, A.: Collagen/gelatin/hydroxyethyl cellulose composites containing microspheres based on collagen and gelatin: design and evaluation. Polymers 10, 1–16 (2018)CrossRefGoogle Scholar
  9. 9.
    Freiberg, S., Zhu, X.X.: Polymer microspheres for controlled drug release. Int. J. Pharm. 282, 1–18 (2004)CrossRefGoogle Scholar
  10. 10.
    Jan, N., Andrabi, K.I., John, R.: Calendula officinalis—an important medicinal plant with potential biological properties. Proc. Indian Natl. Sci. Acad. 83, 769–787 (2017)Google Scholar
  11. 11.
    Basch, E., Bent, S., Foppa, I., Haskmi, S., Kroll, D., Marigold (Calendula officinalis L.): An evidence-based systematic review by the natural standard research collaboration. J. Herb. Pharmacother. 6, 135159 (2006)Google Scholar
  12. 12.
    Singh, M.N., Hemant, K.S.Y., Ram, M., Shivakumar, H.G.: Microencapsulation: A promising technique for controlled drug delivery. Res. Pharm. Sci. 5, 65–67 (2010)Google Scholar
  13. 13.
    Gasperini, L., Mano, J.F., Reis, R.L.: Natural polymers for the microencapsulation of cells. J. R. Soc. Interface 11(20140817), 1–19 (2014)Google Scholar
  14. 14.
    Rodrigues, F.J., Omura, M.H., Cedran, M.F., Dekker, R.F.H., Barbosa-Dekker, A.M., Garcia, S.: Effect of natural polymers on the survival of Lactobacillus casei encapsulated in alginate microspheres. J. Microencapsul. 34, 431–439 (2017)CrossRefGoogle Scholar
  15. 15.
    Gbassi, G.K., Vandamme, T.: Probiotic encapsulation technology: From microencapsulation to release into gut. Pharmaceutics 4, 149–163 (2012)CrossRefGoogle Scholar
  16. 16.
    Suzuki, S., Lim, J.K.: microencapsulation with carrageenan-locust bean gum mixture in a multiphase emulsification technicue for sustained drug release. J. Microencapsul. 11, 197–203 (1994)CrossRefGoogle Scholar
  17. 17.
    Scremin, F.R., Veiga, R.S., Silva-Buzanello, R.A., Becker-Algeri, T.A., Corso, M.P., Torquato, A.S., Bittencourt, P.R.S., Flores, E.L.M., Canan, C.: Synthesis and characterization of protein microcapsules for eugenol storage. J. Therm. Anal. Calorim. 131, 653–660 (2018)CrossRefGoogle Scholar
  18. 18.
    Shori, A.B.: Microencapsulation improved probiotics survival during gastric transit. HAYATI J. Biosci 24, 1–5 (2017)CrossRefGoogle Scholar
  19. 19.
    Stenner, R., Matubayasi, N., Shimizu, S.: Gelation of carrageenan: effects of sugars and polyols. Food Hydrocoll. 54, 284–292 (2016)CrossRefGoogle Scholar
  20. 20.
    Necas, J., Bartosikova, L.: Carrageenan: a revive. Vet. Med. 58, 187–205 (2013)CrossRefGoogle Scholar
  21. 21.
    Muthukumarasamy, P., Allan-Wojtas, P., Holley, R.A.: Stability of Lactobacillus reuteri in different types of microcapsules. J. Food Sci. 71, M20–M24 (2006)CrossRefGoogle Scholar
  22. 22.
    Kozłowska, J., Sionkowska, A., Skopińska-Wiśniewska, J., Piechowicz, K.: Northern pike (Esox lucius) collagen: extraction, characterization and potential application. Int. J. Biol. Macromol. 81, 220–227 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • J. Kozlowska
    • 1
  • K. Pauter
    • 1
  • J. Skopinska-Wisniewska
    • 1
  • A. Sionkowska
    • 1
  1. 1.Faculty of Chemistry, Department of Chemistry of Biomaterials and CosmeticsNicolaus Copernicus University in TorunTorunPoland

Personalised recommendations