Advertisement

Study of the Influence of Sintering Temperature on Water Absorption in the Manufacture of Porcelain Cups

  • T. P. DuarteEmail author
  • J. L. Alves
  • P. Pereira
Chapter
Part of the Advanced Structured Materials book series (STRUCTMAT, volume 98)

Abstract

The final quality of ceramic parts is strongly related with the raw materials, which have different origins, are available in nature in different places, and present heterogeneous characteristics. The particularities of ceramic manufacturing process, like hardness and moisture of pastes, drying and firing cycles, atmospheres, etc., are a multiplicity of factors that causes variability of properties on the final parts, affecting their use in several applications. This work presents a study carried out in a ceramic company that produces products for hotelware, namely coffee plates and mugs. The objective was study the influence of the firing temperature on the porosity, measured by the water absorption capacity. Taking into account the great influence of the energy costs on the final price of the pieces, it was intended to determine the lowest sintering temperature compatible with these ceramics request. It was found that the highest porosity values (about 23%) occurred at temperatures of 750 °C. From 850 to 1050 °C, the porosity variation is not significant, ranging from 21 to 22%, so it is not necessary to use higher sintering temperatures, which significantly increases the cost of the product.

Keywords

Porcelain Traditional ceramics Hotelware Firing cycle Porosity Moisture 

Notes

Acknowledgements

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Project NORTE-01-0145-FEDER-000022 SciTech Science and Technology for Competitive and Sustainable Industries, cofinanced by Programa Operacional Regional do Norte (NORTE2020), through Fundo Europeu de Desenvolvimento Regional (FEDER).

References

  1. 1.
    Powel, H.: The Pottery Handbook Of Clay, Glaze and Colour. Blandford Press (1967)Google Scholar
  2. 2.
    Hlavac, J.: The Technology of Glass and Ceramics—An Introduction. Elsevier (1983)Google Scholar
  3. 3.
    Kingery, W.D., et al.: Introduction to Ceramics. Wiley (1975)Google Scholar
  4. 4.
    Enciclopédia Luso-Brasileira de Cultura. Edição Século XXI. Verbo (1963)Google Scholar
  5. 5.
    Schneider, S.J.: Engineered Materials Handbook—Ceramics and Glass, vol. 04. ASM International (1991)Google Scholar
  6. 6.
    Motta, J.F.M., et al.: As Matérias-Primas Cerâmicas. Parte I: O Perfil das Principais Indústrias Cerâmicas e seus Produtos. Cerâmica Industrial 6(2), 28–39 (2001)Google Scholar
  7. 7.
    Echeverrigaray, S.G., et al.: Low-valued raw materials challenge the common eligibility criteria for triaxial ceramics. Ceram. Int. 42(9), 10671–10681 (2016)CrossRefGoogle Scholar
  8. 8.
    Güngör, F., Ay, N.: The effect of particle size of body components on the processing parameters of semi transparent porcelain. Ceram. Int. 44(9), 10611–10620 (2018)CrossRefGoogle Scholar
  9. 9.
  10. 10.
    Rodrigues, C.M.V.: Optimização da Barbotina para Enchimento de Alta Pressão de Artigos de Porcelana. Master Thesis, Universidade de Aveiro (2009) (in Portuguese)Google Scholar
  11. 11.
    Oliveira, C.S.: Controlo estatístico - Indústria Cerâmica. Master Thesis, Departamento de Química Universidade de Coimbra (2012) (in Portuguese)Google Scholar
  12. 12.
  13. 13.
    Schindler, K., et al.: Wet-pressing of handles in table porcelain manufacturing. In: Refereed Reports IX Conference & Exhibition of the European Ceramic Society, J. Eur. Ceram. Soc. 27(2), 1889–1892 (2007)Google Scholar
  14. 14.
    Fonseca, A.T.: Tecnologia do processamento Cerâmico. Universidade Aberta (2000) (in Portuguese)Google Scholar
  15. 15.
    Neklyudova, T.L., Zakharov, A.: Effect of the molding method on the structure of porcelain articles. Glass Ceram. 70(7/8), 260–264 (2013)Google Scholar
  16. 16.
    Norton, F.H.: Ceramica fina, tecnología Y aplicaciones. Edições ómega S.A. (1988) (in Spanish)Google Scholar
  17. 17.
    Barsoum, M.W.: Fundamentals of Ceramics. McGraw-Hill Company, Inc. (1997)Google Scholar
  18. 18.
    German, R.M.: Sintering and Practice. Wiley (1996)Google Scholar
  19. 19.
    Bailey, M.: Changes in clay during firing. Ceram. Rev. 259, 64–67 (2013)Google Scholar
  20. 20.
    Laita, E., Bauluz, B.: Mineral and textural transformations in aluminium-rich clays during ceramic firing. Appl. Clay Sci. 152, 284–294 (2018)CrossRefGoogle Scholar
  21. 21.
    Technical data sheet, Glaze VDAT 10TGoogle Scholar
  22. 22.
    Martín-Márquez, J., et al.: Effect of firing temperature on sintering of porcelain stoneware tiles. Ceram. Int. 34(8), 1867–1873 (2008)CrossRefGoogle Scholar
  23. 23.
    Oliveira, J.O., Labrincha, J.A.: Esmaltes e Engobes para Monoporosa. Cerâmica Industrial 7(2) (2002) (in Portuguese)Google Scholar
  24. 24.
    Anusavice, K.J., Lee, R.B.: Effect of firing temperature and water exposure on crack propagation in unglazed porcelain. J. Dent. Res. 68(6), 1075–1081 (1989)CrossRefGoogle Scholar
  25. 25.
    Loginov, V.M., et al.: Influence of porcelain production conditions on its whiteness. Glass Ceram. (English translation of Steklo i Keramika) 46(1–2), 10–12 (1989)Google Scholar
  26. 26.
    Pereira, P.: Análise e melhoria do processo de fabrico de louça de hotelaria, Master Thesis, FEUP, UPorto (2018) (in Portuguese)Google Scholar
  27. 27.
    www.mota-sc.com, Setembro (2010)
  28. 28.
    CENCAL – Centro de Formação Profissional para a Indústria Cerâmica. Procedimentos de Controlo de Processo. Serviços Técnicos (2008) (in Portuguese)Google Scholar
  29. 29.
    Alves, T.F.L.P.: Formulação de Pastas Cerâmicas a partir de Matérias-Primas Argilosas dos Concelhos de Vila Viçosa e Redondo para a Produção de Olaria Tradicional. Tese de Mestrado, Departamento de Geociências Universidade de Évora (2015) (in Portuguese)Google Scholar
  30. 30.
    Gomes, C.F.: Argilas – o que são e para que servem. Fundação Calouste Gulbenkian (1988)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of EngineeringINEGI, University of PortoPortoPortugal

Personalised recommendations