Advertisement

Role of Heat Shock Protein 90 in Autoimmune Inflammatory Rheumatic Diseases

  • Hana Storkanova
  • Michal TomcikEmail author
Chapter
Part of the Heat Shock Proteins book series (HESP, volume 16)

Abstract

Hsp90 is the most studied member of the heat shock proteins family (HSP), which are characterized by induction by increased temperature and various other types of stress. It is a highly conserved molecular chaperone that plays a significant role in many cellular processes. Hsp90 is required for the proper conformation and activation of a number of client cellular proteins, including protein kinases, transcription factors and steroid receptors that play an important role in signal transduction. It also regulates activation of innate immunity, antigen presentation, and the induction of proinflammatory cytokines and chemokines by macrophages and dendritic cells. These properties predispose Hsp90 to a potential role in the pathogenesis of autoimmune inflammatory rheumatic diseases. This article provides an overview of the available knowledge about the potential role of Hsp90 in currently studied rheumatic diseases as a promising candidate for targeted therapy or biomarker of disease activity and severity or a predictor of therapeutic response.

Keywords

Autoimmunity Chaperone Cytokine Hsp90 Inflammation Rheumatic diseases 

Abbreviations

17-DMAG

17-dimethylaminoethylamino-17-demethoxygeldanamycin

AAV

Adeno-associated virus

APC

Antigen presenting cells

AS

Ankylosing spondylitis

ATP

Adenosine triphosphate

CD

Cluster of differentiation

Cdc37

Cell division cycle 37

CK2

Casein kinase 2

CRP

C-reactive protein

DAMP

Danger activated molecular pattern

DAS-28

Disease activity score-28

DC

Dendritic cell

DM

Dermatomyositis

ERK

Extracellular signal-regulated kinase

GM-CSF

Granulocyte-macrophage colony-stimulating factor

HLA-B27

Human leukocyte antigen B27

HSP

Heat shock protein family

Hsp

Heat shock proteins

IBM

Inclusion body myositis

ICAM-1

Intracellular adhesion molecule-1

Ig

Immunoglobulin

IIM

Idiopathic inflammatory myopathies

IKK

I-κB kinase

IL

Interleukin

ILD

Interstitial lung disease

IMNM

Immune-mediated necrotizing myopathy

iNOS

Inducible nitric oxide synthase

kDa

KiloDalton

LOX-1

Lectin-like oxidized low-density lipoprotein receptor-1

MAPK

Mitogen-activated protein kinase

MCP-1

Monocyte chemoattractant protein-1

MHC

Major histocompatibility complex

MIP-1

Macrophage inflammatory protein-1

MyoD

Myogenic regulatory protein

NF-κB

Nucelar factor κB

NK

Natural killer cells

nr-axSpA

Non-radiographic axial spondyloarthritis

OA

Osteoarthritis

p23

Prostaglandin E synthase 3

PBMC

Peripheral blood mononuclear cells

PM

Polymyositis

PRR

Pattern recognition receptors

PsA

Psoriatic arthritis

RA

Rheumatoid arthritis

RANTES

Regulated on activation, normal T cell expressed and secreted

SLE

Systemic lupus erythematosus

SpA

Spondyloarthritis

SS

Sjögren’s syndrome

SSc

Systemic sclerosis

TGF

Transforming growth factor

TLR

Toll-like receptor

TNF

Tumor necrosis factor

TRAP1

TNF receptor-associated protein 1

TβRI

TGF-β type I receptor

VCAM-1

Vascular cell adhesion molecule

Notes

Acknowledgements

This chapter was supported by grant projects AZV 16-33542A, AZV 16-33574A, SVV 260263, PRVOUK, UNCE 204022, and the Ministry of Health of the Czech Republic [Research Project No. 00023728].

References

  1. Asea A (2003) Chaperokine-induced signal transduction pathways. Exerc Immunol Rev 9:25–33PubMedPubMedCentralGoogle Scholar
  2. Asea A, Kraeft S-K, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW, Koo GC, Calderwood SK (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6(4):435–442PubMedCrossRefGoogle Scholar
  3. Asea A, Rehli M, Kabingu E, Boch JA, Baré O, Auron PE, Stevenson MA, Calderwood SK (2002) Novel signal transduction pathway utilized by extracellular HSP70. J Biol Chem 277(17):15028–15034PubMedPubMedCentralCrossRefGoogle Scholar
  4. Bårdsen K, Nilsen MM, Kvaløy JT, Norheim KB, Jonsson G, Omdal R (2016) Heat shock proteins and chronic fatigue in primary Sjögren’s syndrome. Innate Immun 22(3):162–167PubMedPubMedCentralCrossRefGoogle Scholar
  5. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12(11):1539–1546PubMedCrossRefGoogle Scholar
  6. Becker T, Hartl F-U, Wieland F (2002) CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158(7):1277–1285PubMedPubMedCentralCrossRefGoogle Scholar
  7. Beyer C, Distler JHW (2013) Tyrosine kinase signaling in fibrotic disorders. Biochim Biophys Acta (BBA) Mol Basis Dis 1832(7):897–904CrossRefGoogle Scholar
  8. Bohonowych JE, Hance MW, Nolan KD, Defee M, Parsons CH, Isaacs JS (2014) Extracellular Hsp90 mediates an NF-κB dependent inflammatory stromal program: implications for the prostate tumor microenvironment. Prostate 74(4):395–407PubMedCrossRefGoogle Scholar
  9. Bornman L, Polla BS, Gericke GS (1996) Heat-shock protein 90 and ubiquitin: developmental regulation during myogenesis. Muscle Nerve 19(5):574–580PubMedCrossRefPubMedCentralGoogle Scholar
  10. Burrows F, Zhang H, Kamal A (2004) Hsp90 activation and cell cycle regulation. Cell Cycle (Georgetown, Tex) 3(12):1530–1536CrossRefGoogle Scholar
  11. Byrd CA, Bornmann W, Erdjument-Bromage H, Tempst P, Pavletich N, Rosen N, Nathan CF, Ding A (1999) Heat shock protein 90 mediates macrophage activation by Taxol and bacterial lipopolysaccharide. Proc Natl Acad Sci U S A 96(10):5645–5650PubMedPubMedCentralCrossRefGoogle Scholar
  12. Cao Y, Ohwatari N, Matsumoto T, Kosaka M, Ohtsuru A, Yamashita S (1999) TGF-beta1 mediates 70-kDa heat shock protein induction due to ultraviolet irradiation in human skin fibroblasts. Proc Natl Acad Sci U S A 96(10):5645–5650CrossRefGoogle Scholar
  13. Chen G, Cao P, Goeddel DV (2002) TNF-induced recruitment and activation of the IKK complex require Cdc37 and Hsp90. Mol Cell 9(2):401–410PubMedCrossRefGoogle Scholar
  14. Chen B, Zhong D, Monteiro A (2006) Comparative genomics and evolution of the HSP90 family of genes across all kingdoms of organisms. BMC Genomics 7:156PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chung S-W, Lee J-H, Choi K-H, Park Y-C, Eo S-K, Rhim B-Y, Kim K (2009) Extracellular heat shock protein 90 induces interleukin-8 in vascular smooth muscle cells. Biochem Biophys Res Commun 378(3):444–449PubMedCrossRefPubMedCentralGoogle Scholar
  16. Csermely P, Kajtár J, Hollósi M, Jalsovszky G, Holly S, Kahn CR, Gergely P, Söti C, Mihály K, Somogyi J (1993) ATP induces a conformational change of the 90-kDa heat shock protein (hsp90). J Biol Chem 268(3):1901–1907PubMedPubMedCentralGoogle Scholar
  17. De Paepe B, Creus KK, Martin J-J, Weis J, De Bleecker JL (2009) A dual role for HSP90 and HSP70 in the inflammatory myopathies: from muscle fiber protection to active invasion by macrophages. Ann N Y Acad Sci 1173:463–469PubMedCrossRefPubMedCentralGoogle Scholar
  18. De Paepe B, Creus KK, Weis J, De Bleecker JL (2012) Heat shock protein families 70 & 90 in Duchenne muscular dystrophy and inflammatory myopathy: Balancing muscle protection & destruction. Neuromuscul Disord Neuromuscul Disord 22(1):26–33PubMedCrossRefPubMedCentralGoogle Scholar
  19. Deane KD, Nicolls MR (2013) Developing better biomarkers for connective tissue disease-associated interstitial lung disease: citrullinated hsp90 autoantibodies in rheumatoid arthritis. Arthritis Rheum 65(4):864–868PubMedPubMedCentralCrossRefGoogle Scholar
  20. Deguchi Y, Negoro S, Kishimoto S (1987) Heat-shock protein synthesis by human peripheral mononuclear cells from sle patients. Biochem Biophys Res Commun 148(3):1063–1068PubMedCrossRefPubMedCentralGoogle Scholar
  21. Delneste Y, Magistrelli G, Gauchat J, Haeuw J, Aubry J, Nakamura K, Kawakami-Honda N, Goetsch L, Sawamura T, Bonnefoy J et al (2002) Involvement of LOX-1 in dendritic cell-mediated antigen cross-presentation. Immunity 17(3):353–362PubMedCrossRefGoogle Scholar
  22. Echeverria PC, Picard D (2010) Molecular chaperones, essential partners of steroid hormone receptors for activity and mobility. Biochim Biophys Acta (BBA) Mol Cell Res 1803(6):641–649CrossRefGoogle Scholar
  23. Erkeller-Yüksel FM, Isenberg DA, Dhillon VB, Latchman DS, Lydyard PM (1992) Surface expression of heat shock protein 90 by blood mononuclear cells from patients with systemic lupus erythematosus. J Autoimmun 5(6):803–814PubMedCrossRefPubMedCentralGoogle Scholar
  24. Geller R, Taguwa S, Frydman J (2012) Broad action of Hsp90 as a host chaperone required for viral replication. Biochim Biophys Acta (BBA) Mol Cell Res 1823(3):698–706CrossRefGoogle Scholar
  25. Hayem G, De Bandt M, Palazzo E, Roux S, Combe B, Eliaou JF, Sany J, Kahn MF, Meyer O (1999) Anti-heat shock protein 70 kDa and 90 kDa antibodies in serum of patients with rheumatoid arthritis. Ann Rheum Dis 58(5):291–296PubMedPubMedCentralCrossRefGoogle Scholar
  26. Hu S, Xu Q, Xiao W, Huang M (2006) The expression of molecular chaperone HSP90 and IL-6 in patients with systemic lupus erythematosus. J Huazhong Univ Sci Technol 26(6):664–666CrossRefGoogle Scholar
  27. Johnson SE, Wang X, Hardy S, Taparowsky EJ, Konieczny SF (1996) Casein kinase II increases the transcriptional activities of MRF4 and MyoD independently of their direct phosphorylation. Mol Cell Biol 16(4):1604–1613PubMedPubMedCentralCrossRefGoogle Scholar
  28. Kalia SK, Kalia LV, McLean PJ (2010) Molecular chaperones as rational drug targets for Parkinson’s disease therapeutics. CNS Neurol Disord Drug Targets 9(6):741–753PubMedPubMedCentralCrossRefGoogle Scholar
  29. Kimmins S, MacRae TH (2000) Maturation of steroid receptors: an example of functional cooperation among molecular chaperones & their associated proteins. Cell Stress Chaperones 5(2):76–86PubMedPubMedCentralCrossRefGoogle Scholar
  30. Koga F, Xu W, Karpova TS, McNally JG, Baron R, Neckers L (2006) Hsp90 inhibition transiently activates Src kinase and promotes Src-dependent Akt and Erk activation. Proc Natl Acad Sci 103(30):11318–11322PubMedCrossRefPubMedCentralGoogle Scholar
  31. Kol A, Bourcier T, Lichtman AH, Libby P (1999) Chlamydial & human heat shock protein 60s activate human vascular endothelium, smooth muscle cells, and macrophages. J Clin Investig 103(4):571PubMedCrossRefGoogle Scholar
  32. Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA (2000) Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol (Baltimore, Md: 1950) 164(1):13–17CrossRefGoogle Scholar
  33. Laplante AF, Moulin V, Auger FA, Landry J, Li H, Morrow G, Tanguay RM, Germain L (1998) Expression of heat shock proteins in mouse skin during wound healing. J Histochem Cytochem Off J Histochem Soc 46(11):1291–1301CrossRefGoogle Scholar
  34. Lehner T, Bergmeier LA, Wang Y, Tao L, Sing M, Spallek R, van der Zee R (2000) Heat shock proteins generate β-chemokines which function as innate adjuvants enhancing adaptive immunity. Eur J Immunol 30(2):594–603PubMedCrossRefGoogle Scholar
  35. Li J, Buchner J (2013) Structure, function and regulation of the hsp90 machinery. Biomed J 36(3):106–117PubMedCrossRefGoogle Scholar
  36. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677PubMedCrossRefGoogle Scholar
  37. Lund PA (2001) Microbial molecular chaperones. Adv Microb Physiol 44:93–140PubMedCrossRefGoogle Scholar
  38. Matzinger P (2002) The danger model: a renewed sense of self. Science 296(5566):301–305PubMedCrossRefPubMedCentralGoogle Scholar
  39. McClellan AJ, Xia Y, Deutschbauer AM, Davis RW, Gerstein M, Frydman J (2007) Diverse cellular functions of the Hsp90 molecular chaperone uncovered using systems approaches. Cell 131(1):121–135PubMedCrossRefGoogle Scholar
  40. Meyer P, Prodromou C, Hu B, Vaughan C, Roe SM, Panaretou B, Piper PW, Pearl LH (2003) Structural & functional analysis of the middle segment of Hsp90: implications for ATP hydrolysis and client protein and cochaperone interactions. Mol Cell 11(3):647–658PubMedCrossRefPubMedCentralGoogle Scholar
  41. Millson SH, Truman AW, Rácz A, Hu B, Panaretou B, Nuttall J, Mollapour M, Söti C, Piper PW (2007) Expressed as the sole Hsp90 of yeast, the alpha and beta isoforms of human Hsp90 differ with regard to their capacities for activation of certain client proteins, whereas only Hsp90beta generates sensitivity to the Hsp90 inhibitor radicicol. FEBS J 274(17):4453–4463PubMedCrossRefPubMedCentralGoogle Scholar
  42. Minota S, Koyasu S, Yahara I, Winfield J (1988) Autoantibodies to the heat-shock protein hsp90 in systemic lupus erythematosus. J Clin Invest 81(1):106–109PubMedPubMedCentralCrossRefGoogle Scholar
  43. Multhoff G (2002) Activation of natural killer cells by heat shock protein 70. Int J Hyperth 18(6):576–585CrossRefGoogle Scholar
  44. Multhoff G, Mizzen L, Winchester CC, Milner CM, Wenk S, Eissner G, Kampinga HH, Laumbacher B, Johnson J (1999) Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol 27(11):1627–1636PubMedCrossRefPubMedCentralGoogle Scholar
  45. Murshid A, Gong J, Calderwood SK (2010) Heat shock protein 90 mediates efficient antigen cross presentation through the scavenger receptor expressed by endothelial cells-I. J Immunol 185(5):2903–2917PubMedPubMedCentralCrossRefGoogle Scholar
  46. Nakamura T, Hinagata J, Tanaka T, Imanishi T, Wada Y, Kodama T, Doi T (2002) HSP90, HSP70, and GAPDH directly interact with the cytoplasmic domain of macrophage scavenger receptors. Biochem Biophys Res Commun 290(2):858–864PubMedCrossRefPubMedCentralGoogle Scholar
  47. Neckers L, Ivy SP (2003) Heat shock protein 90. Curr Opin Oncol 15(6):419–424PubMedCrossRefPubMedCentralGoogle Scholar
  48. Neckers L, Workman P (2012) Hsp90 molecular chaperone inhibitors: are we there yet? Clin Cancer Res Off J Am Assoc Cancer Res 18(1):64–76CrossRefGoogle Scholar
  49. Norton PM, Isenberg DA, Latchman DS (1989) Elevated levels of the 90 kd heat shock protein in a proportion of SLE patients with active disease. J Autoimmun 2(2):187–195PubMedCrossRefPubMedCentralGoogle Scholar
  50. Obermann WM, Sondermann H, Russo AA, Pavletich NP, Hartl FU (1998) In vivo function of Hsp90 is dependent on ATP binding and ATP hydrolysis. J Cell Biol 143(4):901–910PubMedPubMedCentralCrossRefGoogle Scholar
  51. Panchapakesan J, Daglis M, Gatenby P (1992) Antibodies to 65 kDa and 70 kDa heat shock proteins in rheumatoid arthritis & systemic lupus erythematosus. Immunol Cell Biol 70(Pt 5):295–300PubMedCrossRefGoogle Scholar
  52. Panjwani NN, Popova L, Srivastava PK (2002) Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs. J Immunol (Baltimore, Md: 1950) 168(6):2997–3003CrossRefGoogle Scholar
  53. Pearl LH (2005) Hsp90 and Cdc37 – a chaperone cancer conspiracy. Curr Opin Genet Dev 15(1):55–61PubMedCrossRefPubMedCentralGoogle Scholar
  54. Pearl LH, Prodromou C (2000) Structure and in vivo function of Hsp90. Curr Opin Struct Biol 10(1):46–51PubMedCrossRefPubMedCentralGoogle Scholar
  55. Pratt WB, Galigniana MD, Harrell JM, DeFranco DB (2004) Role of hsp90 and the hsp90-binding immunophilins in signalling protein movement. Cell Signal 16(8):857–872PubMedCrossRefPubMedCentralGoogle Scholar
  56. Procházková L, Hulejová H, Němec P, Šenolt L (2013) Cirkulující protein tepelného šoku 90 (HSP90) u pacientů s revmatoidní artritidou a axiální spondyloartritidou. Čes Revmatol 21(4):164–169Google Scholar
  57. Rice JW, Veal JM, Fadden RP, Barabasz AF, Partridge JM, Barta TE, Dubois LG, Huang KH, Mabbett SR, Silinski MA et al (2008) Small molecule inhibitors of Hsp90 potently affect inflammatory disease pathways and exhibit activity in models of rheumatoid arthritis. Arthritis Rheum 58(12):3765–3775PubMedCrossRefGoogle Scholar
  58. Ripley BJ, Stephanou A, Isenberg DA, Latchman DS (1999) Interleukin-10 activates heat-shock protein 90beta gene expression. Immunology 97(2):226–231PubMedPubMedCentralCrossRefGoogle Scholar
  59. Ripley BJ, Isenberg D, Latchman D (2001) Elevated levels of the 90kDa heat shock protein (hsp90) in SLE correlate with levels of IL-6 and autoantibodies to hsp90. J Autoimmun 17(4):341–346PubMedCrossRefGoogle Scholar
  60. Santoro MG (2000) Heat shock factors and the control of the stress response. Biochem Pharmacol 59(1):55–63PubMedCrossRefPubMedCentralGoogle Scholar
  61. Schlesinger MJ (1990) Heat shock proteins. J Biol Chem 265(21):12111–12114PubMedPubMedCentralGoogle Scholar
  62. Shaknovich R, Shue G, Kohtz DS (1992) Conformational activation of a basic helix-loop-helix protein (MyoD1) by the C-terminal region of murine HSP90 (HSP84). Mol Cell Biol 12(11):5059–5068PubMedPubMedCentralCrossRefGoogle Scholar
  63. Singh-Jasuja H, Scherer HU, Hilf N, Arnold-Schild D, Rammensee HG, Toes RE, Schild H (2000) The heat shock protein gp96 induces maturation of dendritic cells and down-regulation of its receptor. Eur J Immunol 30(8):2211–2215PubMedCrossRefPubMedCentralGoogle Scholar
  64. Skhirtladze C, Distler O, Dees C, Akhmetshina A, Busch N, Venalis P, Zwerina J, Spriewald B, Pileckyte M, Schett G et al (2008) Src kinases in systemic sclerosis: central roles in fibroblast activation and in skin fibrosis. Arthritis Rheum 58(5):1475–1484PubMedCrossRefPubMedCentralGoogle Scholar
  65. Somensi N, Brum PO, de Miranda Ramos V, Gasparotto J, Zanotto-Filho A, Rostirolla DC, da Silva Morrone M, Moreira JCF, Pens Gelain D (2017) Extracellular HSP70 activates ERK1/2, NF-kB and pro-inflammatory gene transcription through binding with RAGE in A549 human lung cancer cells. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 42(6):2507–2522CrossRefGoogle Scholar
  66. Somersan S, Larsson M, Fonteneau JF, Basu S, Srivastava P, Bhardwaj N (2001) Primary tumor tissue lysates are enriched in heat shock proteins and induce the maturation of human dendritic cells. J Immunol (Baltimore, Md: 1950) 167(9):4844–4852CrossRefGoogle Scholar
  67. Srivastava P (2002) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2(3):185–194PubMedCrossRefPubMedCentralGoogle Scholar
  68. Stephanou A, Amin V, Isenberg DA, Akira S, Kishimoto T, Latchman DS (1997) Interleukin 6 activates heat-shock protein 90 beta gene expression. Biochem J 321(Pt 1):103–106PubMedPubMedCentralCrossRefGoogle Scholar
  69. Stephanou A, Latchman DS, Isenberg DA, Yellon DM, Latchman DS, Ellis RJ, Schultz DR, Arnold PI, Hickey E, Brandon SE et al (1998) The regulation of heat shock proteins and their role in systemic lupus erythematosus. Sem Arthritis Rheum 28(3):155–162CrossRefGoogle Scholar
  70. Swaroop S, Sengupta N, Suryawanshi AR, Adlakha YK, Basu A (2016) HSP60 plays a regulatory role in IL-1β-induced microglial inflammation via TLR4-p38 MAPK axis. J Neuroinflammation 13(1):27PubMedPubMedCentralCrossRefGoogle Scholar
  71. Taherian A, Krone PH, Ovsenek N (2008) A comparison of Hsp90alpha & Hsp90beta interactions with cochaperones and substrates. Biochem Cell Biol Biochim Biol Cell 86(1):37–45CrossRefGoogle Scholar
  72. Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11(7):515–528PubMedCrossRefPubMedCentralGoogle Scholar
  73. Tomcik M, Zerr P, Pitkowski J, Palumbo-Zerr K, Avouac J, Distler O, Becvar R, Senolt L, Schett G, Distler JH (2014) Heat shock protein 90 (Hsp90) inhibition targets canonical TGF-β signalling to prevent fibrosis. Ann Rheum Dis 73(6):1215–1222PubMedCrossRefGoogle Scholar
  74. Triantafilou K, Triantafilou M, Dedrick RL (2001) A CD14-independent LPS receptor cluster. Nat Immunol 2(4):338–345PubMedCrossRefPubMedCentralGoogle Scholar
  75. Tsan M-F, Gao B (2004a) Cytokine function of heat shock proteins. Cell Physiol 286(4):C739–C744CrossRefGoogle Scholar
  76. Tsan M-F, Gao B (2004b) Heat shock protein and innate immunity. Cell Mol Immunol 1(4):274–279PubMedPubMedCentralGoogle Scholar
  77. Twomey BM, Dhillon VB, McCallum S, Isenberg DA, Latchman DS (1993) Elevated levels of the 90 kD heat shock protein in patients with systemic lupus erythematosus are dependent upon enhanced transcription of the hsp90β gene. J Autoimmun 6(4):495–506PubMedCrossRefGoogle Scholar
  78. Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP70 as endogenous stimulus of the toll/interleukin-1 receptor signal pathway. J Biol Chem 277(17):15107–15112PubMedCrossRefPubMedCentralGoogle Scholar
  79. Wallin RPA, Lundqvist A, Moré SH, von Bonin A, Kiessling R, Ljunggren H-G (2002) Heat-shock proteins as activators of the innate immune system. Trends Immunol 23(3):130–135PubMedCrossRefGoogle Scholar
  80. Wheeler DS (2011) Extracellular heat shock proteins: alarmins for the host immune system. Open Inflamm J 4(1):49–60PubMedPubMedCentralCrossRefGoogle Scholar
  81. Wrighton KH, Lin X, Feng X-H (2008) Critical regulation of TGFbeta signaling by Hsp90. Proc Natl Acad Sci U S A 105(27):9244–9249PubMedPubMedCentralCrossRefGoogle Scholar
  82. Zanin-Zhorov A, Nussbaum G, Franitza S, Cohen IR, Lider O (2003) T cells respond to heat shock protein 60 via TLR2: activation of adhesion and inhibition of chemokine receptors. FASEB J 17(11):1567–1569PubMedCrossRefGoogle Scholar
  83. Zou Y-F, Xu J-H, Gu Y-Y, Pan F-M, Tao J-H, Wang D-G, Xu S-Q, Xiao H, Chen P-L, Liu S et al (2016) Single nucleotide polymorphisms of HSP90AA1 gene influence response of SLE patients to glucocorticoids treatment. SpringerPlus 5:222PubMedPubMedCentralCrossRefGoogle Scholar
  84. Zuehlke AD, Beebe K, Neckers L, Prince T (2015) Regulation and function of the human HSP90AA1 gene. Gene 570(1):8–16PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Institute of Rheumatology, 1st Faculty of MedicineCharles UniversityPragueCzech Republic
  2. 2.Department of Rheumatology, 1st Faculty of MedicineCharles UniversityPragueCzech Republic
  3. 3.Institute of Rheumatology and Department of Rheumatology, 1st Faculty of MedicineCharles UniversityPragueCzech Republic

Personalised recommendations