Heat Shock Protein 60: A Mediator of Atherosclerosis and Its Potential Therapeutic Role

  • Cecilia WickEmail author
Part of the Heat Shock Proteins book series (HESP, volume 16)


Heat shock proteins (HSP) are highly conserved families of proteins expressed by a number of cell types following exposure to stressful environmental conditions in order to protect the cells from injury. The ability of a cell to withstand these environmental stresses is critical to its capacity to adapt and remain viable. Loss of this ability may lead to a pathological state. Abnormal localization, structure or function of HSP has been associated with different pathologies, including atherosclerosis. HSP60 has in particular been identified as playing important roles in inflammatory pathways and immune reactions in atherosclerosis. This chapter will highlight the role of HSP60 in atherosclerosis and the potential to target HSP60 or peptides thereof to alter the progression or even treat atherosclerosis.


Atherosclerosis Autoimmunity Heat shock protein 60 Inflammation Regulatory T cells Tolerization 



Acute coronary syndrome


Advanced glycation end product


Antigen-presenting cell


Apolipoprotein E deficient


Chlamydia pneumonia heat shock protein 60


Cardiovascular disease


Dendritic cell


Glycoprotein A representations predominant


Human heat shock protein 60 produced in Escherichia coli


High cholesterol diet


Human heat shock protein 60


Heat shock protein


Intracellular adhesion molecule-1






Inter media thickness


Latency associated peptide


Low-density lipoprotein


Low lipoprotein receptor deficient




Mycobacterial tuberculosis heat shock protein 65


Major histocompatibility complex


Nitric oxid


Oxidized low-density lipoprotein


Peripheral blood mononuclear cells


Rheumatoid arthritis


V(D)J recombination activation gene 1 deficient


Rat C-terminal determinants


Rat heat shock protein 65


Severe combined immunodeficiency


Soluble heat shock protein 60


Systemic lupus erythematous


Smooth muscle cell


Transforming growth factor


Toll-like receptor


Tumor necrosis factor


Regulatory T cell


Vascular cell adhesion molecule-1



I grateful to Professor em. Georg Wick, Laboratory of Autoimmunity, Section of Experimental Pathophysiology and Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria, for his kind help and valuable comments.


  1. Aalberse JA, Kapitein B, de Roock S, Klein MR, de Jager W, van der Zee R, Hoekstra MO, van Wijk F, Prakken BJ (2011) Cord blood CD4+ T cells respond to self heat shock protein 60 (HSP60). PLoS One 6:e24119PubMedPubMedCentralCrossRefGoogle Scholar
  2. Afek A, George J, Gilburd B, Rauova L, Goldberg I, Kopolovic J, Harats D, Shoenfeld Y (2000) Immunization of low-density lipoprotein receptor deficient (LDL-RD) mice with heat shock protein 65 (HSP-65) promotes early atherosclerosis. J Autoimmun 14:115–121PubMedCrossRefGoogle Scholar
  3. Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdy P, Zoll J, Merval R, Esposito B, Cohen JL, Fisson S et al (2006) Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 12:178–180PubMedCrossRefGoogle Scholar
  4. Almanzar G, Ollinger R, Leuenberger J, Onestingel E, Rantner B, Zehm S, Cardini B, van der Zee R, Grundtman C, Wick G (2012) Autoreactive HSP60 epitope-specific T-cells in early human atherosclerotic lesions. J Autoimmun 39:441–450PubMedPubMedCentralCrossRefGoogle Scholar
  5. Amberger A, Maczek C, Jurgens G, Michaelis D, Schett G, Trieb K, Eberl T, Jindal S, Xu Q, Wick G (1997) Co-expression of ICAM-1, VCAM-1, ELAM-1 and Hsp60 in human arterial and venous endothelial cells in response to cytokines and oxidized low-density lipoproteins. Cell Stress Chaperones 2:94–103PubMedPubMedCentralCrossRefGoogle Scholar
  6. Anderton SM, van der Zee R, Goodacre JA (1993) Inflammation activates self hsp60-specific T cells. Eur J Immunol 23:33–38PubMedCrossRefGoogle Scholar
  7. Anraku I, Rajasuriar R, Dobbin C, Brown R, Lewin SR, Suhrbier A (2012) Circulating heat shock protein 60 levels are elevated in HIV patients and are reduced by anti-retroviral therapy. PLoS One 7:e45291PubMedPubMedCentralCrossRefGoogle Scholar
  8. Ashburner M (1970) Patterns of puffing activity in the salivary gland chromosomes of Drosophila. V. Responses to environmental treatments. Chromosoma 31:356–376PubMedCrossRefGoogle Scholar
  9. Basu S, Binder RJ, Suto R, Anderson KM, Srivastava PK (2000) Necrotic but not apoptotic cell death releases heat shock proteins, which deliver a partial maturation signal to dendritic cells and activate the NF-kappa B pathway. Int Immunol 12:1539–1546PubMedCrossRefGoogle Scholar
  10. Benagiano M, D’Elios MM, Amedei A, Azzurri A, van der Zee R, Ciervo A, Rombola G, Romagnani S, Cassone A, Del Prete G (2005) Human 60-kDa heat shock protein is a target autoantigen of T cells derived from atherosclerotic plaques. J Immunol 174:6509–6517PubMedCrossRefGoogle Scholar
  11. Bentzon JF, Otsuka F, Virmani R, Falk E (2014) Mechanisms of plaque formation and rupture. Circ Res 114:1852–1866PubMedCrossRefGoogle Scholar
  12. Bobryshev YV (2010) Dendritic cells and their role in atherogenesis. Lab Investig 90:970–984PubMedCrossRefGoogle Scholar
  13. Bobryshev YV, Lord RS (1996) Structural heterogeneity and contacting interactions of vascular dendritic cells in early atherosclerotic lesions of the human aorta. J Submicrosc Cytol Pathol 28:49–60PubMedGoogle Scholar
  14. Bobryshev YV, Lord RS (1998) Mapping of vascular dendritic cells in atherosclerotic arteries suggests their involvement in local immune-inflammatory reactions. Cardiovasc Res 37:799–810PubMedCrossRefGoogle Scholar
  15. Boog CJ, de Graeff-Meeder ER, Lucassen MA, van der Zee R, Voorhorst-Ogink MM, van Kooten PJ, Geuze HJ, van Eden W (1992) Two monoclonal antibodies generated against human hsp60 show reactivity with synovial membranes of patients with juvenile chronic arthritis. J Exp Med 175:1805–1810PubMedCrossRefGoogle Scholar
  16. Breloer M, Domer B, Moré SH, Roderian T, Fleischer B, von Bonin A (2001) Heat shock proteins as “danger signals”: eukaryotic Hsp60 enhanses and accelerates antigen-specific IFN-gamma production in T cells. Eur J Immunol 31:2051–2059PubMedCrossRefGoogle Scholar
  17. Burian K, Kis Z, Virok D, Endresz V, Prohaszka Z, Duba J, Berencsi K, Boda K, Horvath L, Romics L et al (2001) Independent and joint effects of antibodies to human heat-shock protein 60 and Chlamydia pneumoniae infection in the development of coronary atherosclerosis. Circulation 103:1503–1508PubMedCrossRefGoogle Scholar
  18. Chandra D, Choy G, Tang DG (2007) Cytosolic accumulation of HSP60 during apoptosis with or without apparent mitochondrial release: evidence that its pro-apoptotic or pro-survival functions involve differential interactions with caspase-3. J Biol Chem 282:31289–31301PubMedCrossRefGoogle Scholar
  19. Chen W, Syldath U, Bellmann K, Burkart V, Kolb H (1999) Human 60-kDa heat-shock protein: a danger signal to the innate immune system. J Immunol 162:3212–3219PubMedGoogle Scholar
  20. Choi J, Chung SW, Kim SJ, Kim SJ (2001) Establishment of Porphyromonas gingivalis-specific T-cell lines from atherosclerosis patients. Oral Microbiol Immunol 16:316–318PubMedCrossRefGoogle Scholar
  21. Choi JI, Chung SW, Kang HS, Rhim BY, Kim SJ, Kim SJ (2002) Establishment of Porphyromonas gingivalis heat-shock-protein-specific T-cell lines from atherosclerosis patients. J Dent Res 81:344–348PubMedCrossRefGoogle Scholar
  22. Choi JI, Chung SW, Kang HS, Rhim BY, Park YM, Kim US, Kim SJ (2004a) Epitope mapping of Porphyromonas gingivalis heat-shock protein and human heat-shock protein in human atherosclerosis. J Dent Res 83:936–940PubMedCrossRefGoogle Scholar
  23. Choi JI, Kang HS, Park YM, Kim SJ, Kim US (2004b) Identification of T-cell epitopes of Porphyromonas gingivalis heat-shock-protein 60 in periodontitis. Oral Microbiol Immunol 19:1–5PubMedCrossRefGoogle Scholar
  24. Crisby M, Kallin B, Thyberg J, Zhivotovsky B, Orrenius S, Kostulas V, Nilsson J (1997) Cell death in human atherosclerotic plaques involves both oncosis and apoptosis. Atherosclerosis 130:17–27PubMedCrossRefGoogle Scholar
  25. Cybulsky MI, Jongstra-Bilen J (2010) Resident intimal dendritic cells and the initiation of atherosclerosis. Curr Opin Lipidol 21:397–403PubMedCrossRefGoogle Scholar
  26. Czarnecka AM, Campanella C, Zummo G, Cappello F (2006) Mitochondrial chaperones in cancer: from molecular biology to clinical diagnostics. Cancer Biol Ther 5:714–720PubMedCrossRefGoogle Scholar
  27. Deocaris CC, Kaul SC, Wadhwa R (2006) On the brotherhood of the mitochondrial chaperones mortalin and heat shock protein 60. Cell Stress Chaperones 11:116–128PubMedPubMedCentralCrossRefGoogle Scholar
  28. Durai M, Gupta RS, Moudgil KD (2004) The T cells specific for the carboxyl-terminal determinants of self (rat) heat-shock protein 65 escape tolerance induction and are involved in regulation of autoimmune arthritis. J Immunol 172:2795–2802PubMedCrossRefGoogle Scholar
  29. Elst EF, Klein M, de Jager W, Kamphuis S, Wedderburn LR, van der Zee R, Albani S, Kuis W, Prakken BJ (2008) Hsp60 in inflamed muscle tissue is the target of regulatory autoreactive T cells in patients with juvenile dermatomyositis. Arthritis Rheum 58:547–555PubMedCrossRefGoogle Scholar
  30. Faria AM, Weiner HL (1999) Oral tolerance: mechanisms and therapeutic applications. Adv Immunol 73:153–264PubMedCrossRefGoogle Scholar
  31. Feng H, Zeng Y, Graner MW, Katsanis E (2002) Stressed apoptotic tumor cells stimulate dendritic cells and induce specific cytotoxic T cells. Blood 100:4108–4115PubMedCrossRefGoogle Scholar
  32. Fisch P, Malkovsky M, Braakman E, Sturm E, Bolhuis RL, Prieve A, Sosman JA, Lam VA, Sondel PM (1990) Gamma/delta T cell clones and natural killer cell clones mediate distinct patterns of non-major histocompatibility complex-restricted cytolysis. J Exp Med 171:1567–1579PubMedCrossRefGoogle Scholar
  33. Fischer HP, Sharrock CE, Panayi GS (1992) High frequency of cord blood lymphocytes against mycobacterial 65-kDa heat-shock protein. Eur J Immunol 22:1667–1669PubMedCrossRefGoogle Scholar
  34. Ford PJ, Gemmell E, Hamlet SM, Hasan A, Walker PJ, West MJ, Cullinan MP, Seymour GJ (2005) Cross-reactivity of GroEL antibodies with human heat shock protein 60 and quantification of pathogens in atherosclerosis. Oral Microbiol Immunol 20:296–302PubMedCrossRefGoogle Scholar
  35. Foteinos G, Afzal AR, Mandal K, Jahangiri M, Xu Q (2005) Anti-heat shock protein 60 autoantibodies induce atherosclerosis in apolipoprotein E-deficient mice via endothelial damage. Circulation 112:1206–1213PubMedCrossRefGoogle Scholar
  36. Galkina E, Kadl A, Sanders J, Varughese D, Sarembock IJ, Ley K (2006) Lymphocyte recruitment into the aortic wall before and during development of atherosclerosis is partially L-selectin dependent. J Exp Med 203:1273–1282PubMedPubMedCentralCrossRefGoogle Scholar
  37. George J, Shoenfeld Y, Afek A, Gilburd B, Keren P, Shaish A, Kopolovic J, Wick G, Harats D (1999) Enhanced fatty streak formation in C57BL/6J mice by immunization with heat shock protein-65. Arterioscler Thromb Vasc Biol 19:505–510PubMedCrossRefGoogle Scholar
  38. George J, Greenberg S, Barshack I, Goldberg I, Keren G, Roth A (2003) Immunity to heat shock protein 65 – an additional determinant in intimal thickening. Atherosclerosis 168:33–38PubMedCrossRefGoogle Scholar
  39. Ghosh JC, Dohi T, Kang BH, Altieri DC (2008) Hsp60 regulation of tumor cell apoptosis. J Biol Chem 283:5188–5194PubMedCrossRefGoogle Scholar
  40. Gruber R, Lederer S, Bechtel U, Lob S, Riethmuller G, Feucht HE (1996) Increased antibody titers against mycobacterial heat-shock protein 65 in patients with vasculitis and arteriosclerosis. Int Arch Allergy Immunol 110:95–98PubMedCrossRefGoogle Scholar
  41. Grundtman C, Wick G (2011) The autoimmune concept of atherosclerosis. Curr Opin Lipidol 22:327–334PubMedPubMedCentralCrossRefGoogle Scholar
  42. Grundtman C, Kreutmayer SB, Almanzar G, Wick MC, Wick G (2011) Heat shock protein 60 and immune inflammatory responses in atherosclerosis. Arterioscler Thromb Vasc Biol 31:960–968PubMedPubMedCentralCrossRefGoogle Scholar
  43. Grundtman C, Jakic B, Buszko M, Onestingel E, Almanzar G, Demetz E, Dietrich H, Cappellano G, Wick G (2015) Mycobacterial heat shock protein 65 (mbHSP65)-induced atherosclerosis: preventive oral tolerization and definition of atheroprotective and atherogenic mbHSP65 peptides. Atherosclerosis 242:303–310PubMedCrossRefGoogle Scholar
  44. Harats D, Yacov N, Gilburd B, Shoenfeld Y, George J (2002) Oral tolerance with heat shock protein 65 attenuates Mycobacterium tuberculosis-induced and high-fat-diet-driven atherosclerotic lesions. J Am Coll Cardiol 40:1333–1338PubMedCrossRefGoogle Scholar
  45. Hochleitner BW, Hochleitner EO, Obrist P, Eberl T, Amberger A, Xu Q, Margreiter R, Wick G (2000) Fluid shear stress induces heat shock protein 60 expression in endothelial cells in vitro and in vivo. Arterioscler Thromb Vasc Biol 20:617–623PubMedCrossRefGoogle Scholar
  46. Hoppichler F, Koch T, Dzien A, Gschwandtner G, Lechleitner M (2000) Prognostic value of antibody titre to heat-shock protein 65 on cardiovascular events. Cardiology 94:220–223PubMedCrossRefGoogle Scholar
  47. Horvath L, Czirjak L, Fekete B, Jakab L, Prohaszka Z, Cervenak L, Romics L, Singh M, Daha MR, Fust G (2001) Levels of antibodies against C1q and 60 kDa family of heat shock proteins in the sera of patients with various autoimmune diseases. Immunol Lett 75:103–109PubMedCrossRefGoogle Scholar
  48. Horvath M, Hajek P, Stechovsky C, Honek J, Spacek M, Veselka J (2016) The role of near-infrared spectroscopy in the detection of vulnerable atherosclerotic plaques. Arch Med Sci 12:1308–1316PubMedPubMedCentralCrossRefGoogle Scholar
  49. Houtkamp MA, de Boer OJ, van der Loos CM, van der Wal AC, Becker AE (2001) Adventitial infiltrates associated with advanced atherosclerotic plaques: structural organization suggests generation of local humoral immune responses. J Pathol 193:263–269PubMedCrossRefGoogle Scholar
  50. Huang QQ, Sobkoviak R, Jockheck-Clark AR, Shi B, Mandelin AM 2nd, Tak PP, Haines GK 3rd, Nicchitta CV, Pope RM (2009) Heat shock protein 96 is elevated in rheumatoid arthritis and activates macrophages primarily via TLR2 signaling. J Immunol 182:4965–4973PubMedPubMedCentralCrossRefGoogle Scholar
  51. Huang MN, Yu H, Moudgil KD (2010) The involvement of heat-shock proteins in the pathogenesis of autoimmune arthritis: a critical appraisal. Semin Arthritis Rheum 40:164–175PubMedCrossRefGoogle Scholar
  52. Huber SA, Sakkinen P, David C, Newell MK, Tracy RP (2001) T helper-cell phenotype regulates atherosclerosis in mice under conditions of mild hypercholesterolemia. Circulation 103:2610–2616PubMedCrossRefGoogle Scholar
  53. Imamura Y, Kurokawa MS, Yoshikawa H, Nara K, Takada E, Masuda C, Tsukikawa S, Ozaki S, Matsuda T, Suzuki N (2005) Involvement of Th1 cells and heat shock protein 60 in the pathogenesis of intestinal Behcet’s disease. Clin Exp Immunol 139:371–378PubMedPubMedCentralCrossRefGoogle Scholar
  54. Jakic B, Buszko M, Cappellano G, Wick G (2017) Elevated sodium leads to the increased expression of HSP60 and induces apoptosis in HUVECs. PLoS One 12:e0179383PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jiang H, Canfield SM, Gallagher MP, Jiang HH, Jiang Y, Zheng Z, Chess L (2010) HLA-E-restricted regulatory CD8(+) T cells are involved in development and control of human autoimmune type 1 diabetes. J Clin Invest 120:3641–3650PubMedPubMedCentralCrossRefGoogle Scholar
  56. Jing H, Yong L, Haiyan L, Yanjun M, Yun X, Yu Z, Taiming L, Rongyue C, Liang J, Jie W et al (2011) Oral administration of Lactococcus lactis delivered heat shock protein 65 attenuates atherosclerosis in low-density lipoprotein receptor-deficient mice. Vaccine 29:4102–4109PubMedCrossRefGoogle Scholar
  57. Kanwar RK, Kanwar JR, Wang D, Ormrod DJ, Krissansen GW (2001) Temporal expression of heat shock proteins 60 and 70 at lesion-prone sites during atherogenesis in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 21:1991–1997PubMedCrossRefGoogle Scholar
  58. Kapitein B, Aalberse JA, Klein MR, de Jager W, Hoekstra MO, Knol EF, Prakken BJ (2013) Recognition of self-heat shock protein 60 by T cells from patients with atopic dermatitis. Cell Stress Chaperones 18:87–95PubMedCrossRefGoogle Scholar
  59. Kaufmann SH (1990) Heat shock proteins and the immune response. Immunol Today 11:129–136PubMedCrossRefGoogle Scholar
  60. Khallou-Laschet J, Tupin E, Caligiuri G, Poirier B, Thieblemont N, Gaston AT, Vandaele M, Bleton J, Tchapla A, Kaveri SV et al (2006) Atheroprotective effect of adjuvants in apolipoprotein E knockout mice. Atherosclerosis 184:330–341PubMedCrossRefGoogle Scholar
  61. Kleindienst R, Xu Q, Willeit J, Waldenberger FR, Weimann S, Wick G (1993) Immunology of atherosclerosis. Demonstration of heat shock protein 60 expression and T lymphocytes bearing alpha/beta or gamma/delta receptor in human atherosclerotic lesions. Am J Pathol 142:1927–1937PubMedPubMedCentralGoogle Scholar
  62. Klingenberg R, Ketelhuth DF, Strodthoff D, Gregori S, Hansson GK (2012) Subcutaneous immunization with heat shock protein-65 reduces atherosclerosis in Apoe(−)/(−) mice. Immunobiology 217:540–547PubMedCrossRefGoogle Scholar
  63. Knoflach M, Kiechl S, Kind M, Said M, Sief R, Gisinger M, van der Zee R, Gaston H, Jarosch E, Willeit J et al (2003) Cardiovascular risk factors and atherosclerosis in young males: ARMY study (Atherosclerosis Risk-Factors in Male Youngsters). Circulation 108:1064–1069PubMedCrossRefGoogle Scholar
  64. Knoflach M, Kiechl S, Mayrl B, Kind M, Gaston JS, van der Zee R, Faggionato A, Mayr A, Willeit J, Wick G (2007) T-cell reactivity against HSP60 relates to early but not advanced atherosclerosis. Atherosclerosis 195:333–338PubMedCrossRefGoogle Scholar
  65. Knoflach M, Kiechl S, Penz D, Zangerle A, Schmidauer C, Rossmann A, Shingh M, Spallek R, Griesmacher A, Bernhard D et al (2009) Cardiovascular risk factors and atherosclerosis in young women: atherosclerosis risk factors in female youngsters (ARFY study). Stroke 40:1063–1069PubMedCrossRefGoogle Scholar
  66. Kol A, Lichtman AH, Finberg RW, Libby P, Kurt-Jones EA (2000) Cutting edge: heat shock protein (HSP) 60 activates the innate immune response: CD14 is an essential receptor for HSP60 activation of mononuclear cells. J Immunol 164:13–17PubMedCrossRefGoogle Scholar
  67. Kreutmayer SB, Messner B, Knoflach M, Henderson B, Niederegger H, Bock G, Van der Zee R, Wick G, Bernhard D (2011) Dynamics of heat shock protein 60 in endothelial cells exposed to cigarette smoke extract. J Mol Cell Cardiol 51:777–780PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kreutmayer S, Csordas A, Kern J, Maass V, Almanzar G, Offterdinger M, Ollinger R, Maass M, Wick G (2013) Chlamydia pneumoniae infection acts as an endothelial stressor with the potential to initiate the earliest heat shock protein 60-dependent inflammatory stage of atherosclerosis. Cell Stress Chaperones 18:259–268PubMedCrossRefGoogle Scholar
  69. Lewthwaite J, Owen N, Coates A, Henderson B, Steptoe A (2002) Circulating human heat shock protein 60 in the plasma of British civil servants: relationship to physiological and psychosocial stress. Circulation 106:196–201PubMedCrossRefGoogle Scholar
  70. Li H, Ding Y, Yi G, Zeng Q, Yang W (2012) Establishment of nasal tolerance to heat shock protein-60 alleviates atherosclerosis by inducing TGF-beta-dependent regulatory T cells. J Huazhong Univ Sci Technol Med Sci 32:24–30PubMedCrossRefGoogle Scholar
  71. Liang J, Aihua Z, Yu W, Yong L, Jingjing L (2010) HSP65 serves as an immunogenic carrier for a diabetogenic peptide P277 inducing anti-inflammatory immune response in NOD mice by nasal administration. Vaccine 28:3312–3317PubMedCrossRefGoogle Scholar
  72. Lindquist S, Craig EA (1988) The heat-shock proteins. Annu Rev Genet 22:631–677PubMedCrossRefGoogle Scholar
  73. Liu P, Yu YR, Spencer JA, Johnson AE, Vallanat CT, Fong AM, Patterson C, Patel DD (2008) CX3CR1 deficiency impairs dendritic cell accumulation in arterial intima and reduces atherosclerotic burden. Arterioscler Thromb Vasc Biol 28:243–250PubMedCrossRefGoogle Scholar
  74. Liu A, Ming JY, Fiskesund R, Ninio E, Karabina SA, Bergmark C, Frostegard AG, Frostegard J (2015) Induction of dendritic cell-mediated T-cell activation by modified but not native low-density lipoprotein in humans and inhibition by annexin a5: involvement of heat shock proteins. Arterioscler Thromb Vasc Biol 35:197–205PubMedCrossRefGoogle Scholar
  75. Lu X, Chen D, Endresz V, Xia M, Faludi I, Burian K, Szabo A, Csanadi A, Miczak A, Gonczol E et al (2010) Immunization with a combination of ApoB and HSP60 epitopes significantly reduces early atherosclerotic lesion in Apobtm2SgyLdlrtm1Her/J mice. Atherosclerosis 212:472–480PubMedCrossRefGoogle Scholar
  76. Lydyard PM, van Eden W (1990) Heat shock proteins: immunity and immunopathology. Immunol Today 11:228–229PubMedCrossRefGoogle Scholar
  77. Maiellaro K, Taylor WR (2007) The role of the adventitia in vascular inflammation. Cardiovasc Res 75:640–648PubMedPubMedCentralCrossRefGoogle Scholar
  78. Mallat Z, Ait-Oufella H, Tedgui A (2005) Regulatory T cell responses: potential role in the control of atherosclerosis. Curr Opin Lipidol 16:518–524PubMedCrossRefGoogle Scholar
  79. Marengo EB, Commodaro AG, Peron JP, de Moraes LV, Portaro FC, Belfort R Jr, Rizzo LV, Sant'Anna OA (2009) Administration of Mycobacterium leprae rHsp65 aggravates experimental autoimmune uveitis in mice. PLoS One 4:e7912PubMedPubMedCentralCrossRefGoogle Scholar
  80. Maron R, Sukhova G, Faria AM, Hoffmann E, Mach F, Libby P, Weiner HL (2002) Mucosal administration of heat shock protein-65 decreases atherosclerosis and inflammation in aortic arch of low-density lipoprotein receptor-deficient mice. Circulation 106:1708–1715PubMedCrossRefGoogle Scholar
  81. Martin J (1997) Molecular chaperones and mitochondrial protein folding. J Bioenerg Biomembr 29:35–43PubMedCrossRefGoogle Scholar
  82. Mayr M, Metzler B, Kiechl S, Willeit J, Schett G, Xu Q, Wick G (1999) Endothelial cytotoxicity mediated by serum antibodies to heat shock proteins of Escherichia coli and Chlamydia pneumoniae: immune reactions to heat shock proteins as a possible link between infection and atherosclerosis. Circulation 99:1560–1566PubMedCrossRefGoogle Scholar
  83. Mayr M, Kiechl S, Willeit J, Wick G, Xu Q (2000) Infections, immunity, and atherosclerosis: associations of antibodies to Chlamydia pneumoniae, Helicobacter pylori, and cytomegalovirus with immune reactions to heat-shock protein 60 and carotid or femoral atherosclerosis. Circulation 102:833–839PubMedCrossRefGoogle Scholar
  84. McKenzie SL, Henikoff S, Meselson M (1975) Localization of RNA from heat-induced polysomes at puff sites in Drosophila melanogaster. Proc Natl Acad Sci U S A 72:1117–1121PubMedPubMedCentralCrossRefGoogle Scholar
  85. Metzler B, Wraith DC (1999) Inhibition of T-cell responsiveness by nasal peptide administration: influence of the thymus and differential recovery of T-cell-dependent functions. Immunology 97:257–263PubMedPubMedCentralCrossRefGoogle Scholar
  86. Michaelsson J, Teixeira de Matos C, Achour A, Lanier LL, Karre K, Soderstrom K (2002) A signal peptide derived from hsp60 binds HLA-E and interferes with CD94/NKG2A recognition. J Exp Med 196:1403–1414PubMedPubMedCentralCrossRefGoogle Scholar
  87. Millonig G, Niederegger H, Rabl W, Hochleitner BW, Hoefer D, Romani N, Wick G (2001a) Network of vascular-associated dendritic cells in intima of healthy young individuals. Arterioscler Thromb Vasc Biol 21:503–508PubMedCrossRefGoogle Scholar
  88. Millonig G, Niederegger H, Wick G (2001b) Analysis of the cellular composition of the arterial intima with modified en face techniques. Lab Investig 81:639–641PubMedCrossRefGoogle Scholar
  89. Millonig G, Schwentner C, Mueller P, Mayerl C, Wick G (2001c) The vascular-associated lymphoid tissue: a new site of local immunity. Curr Opin Lipidol 12:547–553PubMedCrossRefGoogle Scholar
  90. Millonig G, Malcom GT, Wick G (2002) Early inflammatory-immunological lesions in juvenile atherosclerosis from the Pathobiological Determinants of Atherosclerosis in Youth (PDAY)-study. Atherosclerosis 160:441–448PubMedCrossRefGoogle Scholar
  91. Moos MP, John N, Grabner R, Nossmann S, Gunther B, Vollandt R, Funk CD, Kaiser B, Habenicht AJ (2005) The lamina adventitia is the major site of immune cell accumulation in standard chow-fed apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 25:2386–2391PubMedCrossRefGoogle Scholar
  92. Moran L, Mirault ME, Arrigo AP, Goldschmidt-Clermont M, Tissieres A (1978) Heat shock of Drosophila melanogaster induces the synthesis of new messenger RNAs and proteins. Philos Trans R Soc Lond Ser B Biol Sci 283:391–406CrossRefGoogle Scholar
  93. More SH, Breloer M, von BA (2001) Eukaryotic heat shock proteins as molecular links in innate and adaptive immune responses: Hsp60-mediated activation of cytotoxic T cells. Int Immunol 13:1121–1127PubMedCrossRefGoogle Scholar
  94. Mori Y, Kitamura H, Song QH, Kobayashi T, Umemura S, Cyong JC (2000) A new murine model for atherosclerosis with inflammation in the periodontal tissue induced by immunization with heat shock protein 60. Hypertens Res 23:475–481PubMedCrossRefGoogle Scholar
  95. Moulton KS, Vakili K, Zurakowski D, Soliman M, Butterfield C, Sylvin E, Lo KM, Gillies S, Javaherian K, Folkman J (2003) Inhibition of plaque neovascularization reduces macrophage accumulation and progression of advanced atherosclerosis. Proc Natl Acad Sci U S A 100:4736–4741PubMedPubMedCentralCrossRefGoogle Scholar
  96. O’Brien KD, McDonald TO, Chait A, Allen MD, Alpers CE (1996) Neovascular expression of E-selectin, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 in human atherosclerosis and their relation to intimal leukocyte content. Circulation 93:672–682PubMedCrossRefGoogle Scholar
  97. Oda A, Miyata M, Kodama E, Satoh H, Sato Y, Nishimaki T, Nomaguchi H, Kasukawa R (1994) Antibodies to 65Kd heat-shock protein were elevated in rheumatoid arthritis. Clin Rheumatol 13:261–264PubMedGoogle Scholar
  98. Okamoto E, Couse T, De Leon H, Vinten-Johansen J, Goodman RB, Scott NA, Wilcox JN (2001) Perivascular inflammation after balloon angioplasty of porcine coronary arteries. Circulation 104:2228–2235PubMedCrossRefGoogle Scholar
  99. Osborn EA, Jaffer FA (2013) Imaging atherosclerosis and risk of plaque rupture. Curr Atheroscler Rep 15:359PubMedCrossRefGoogle Scholar
  100. Osterloh A, Meier-Stiegen F, Veit A, Fleischer B, von Bonin A, Breloer M (2004) Lipopolysaccharide-free heat shock protein 60 activates T cells. J Biol Chem 279:47906–47911PubMedCrossRefGoogle Scholar
  101. Osterloh A, Geisinger F, Pie’davent M, Fleischer B, Brattig N, Breloer M (2009) Heat shock protein 60 (HSP60) stimulates neutrophil effector functions. J Leukoc Biol 86:423–434PubMedCrossRefGoogle Scholar
  102. Panchapakesan J, Daglis M, Gatenby P (1992) Antibodies to 65 kDa and 70 kDa heat shock proteins in rheumatoid arthritis and systemic lupus erythematosus. Immunol Cell Biol 70(Pt 5):295–300PubMedCrossRefGoogle Scholar
  103. Perschinka H, Mayr M, Millonig G, Mayerl C, van der Zee R, Morrison SG, Morrison RP, Xu Q, Wick G (2003) Cross-reactive B-cell epitopes of microbial and human heat shock protein 60/65 in atherosclerosis. Arterioscler Thromb Vasc Biol 23:1060–1065PubMedCrossRefGoogle Scholar
  104. Pfister G, Stroh CM, Perschinka H, Kind M, Knoflach M, Hinterdorfer P, Wick G (2005) Detection of HSP60 on the membrane surface of stressed human endothelial cells by atomic force and confocal microscopy. J Cell Sci 118:1587–1594PubMedCrossRefGoogle Scholar
  105. Pockley AG, Wu R, Lemne C, Kiessling R, de Faire U, Frostegard J (2000) Circulating heat shock protein 60 is associated with early cardiovascular disease. Hypertension 36:303–307PubMedCrossRefGoogle Scholar
  106. Puga Yung GL, Fidler M, Albani E, Spermon N, Teklenburg G, Newbury R, Schechter N, van den Broek T, Prakken B, Billetta R et al (2009) Heat shock protein-derived T-cell epitopes contribute to autoimmune inflammation in pediatric Crohn's disease. PLoS One 4:e7714PubMedPubMedCentralCrossRefGoogle Scholar
  107. Quintana FJ, Carmi P, Mor F, Cohen IR (2002) Inhibition of adjuvant arthritis by a DNA vaccine encoding human heat shock protein 60. J Immunol 169:3422–3428PubMedCrossRefGoogle Scholar
  108. Quintana FJ, Carmi P, Mor F, Cohen IR (2003) DNA fragments of the human 60-kDa heat shock protein (HSP60) vaccinate against adjuvant arthritis: identification of a regulatory HSP60 peptide. J Immunol 171:3533–3541PubMedCrossRefGoogle Scholar
  109. Quintana FJ, Carmi P, Mor F, Cohen IR (2004) Inhibition of adjuvant-induced arthritis by DNA vaccination with the 70-kd or the 90-kd human heat-shock protein: immune cross-regulation with the 60-kd heat-shock protein. Arthritis Rheum 50:3712–3720PubMedCrossRefGoogle Scholar
  110. Quintana FJ, Mimran A, Carmi P, Mor F, Cohen IR (2008) HSP60 as a target of anti-ergotypic regulatory T cells. PLoS One 3:e4026PubMedPubMedCentralCrossRefGoogle Scholar
  111. Retzlaff C, Yamamoto Y, Hoffman PS, Friedman H, Klein TW (1994) Bacterial heat shock proteins directly induce cytokine mRNA and interleukin-1 secreation in macrophage cultures. Infect Immun 62:5689–5693PubMedPubMedCentralGoogle Scholar
  112. Ritossa FM (1962) A new puffing pattern induced by temperature shock and DNP in Drosophila. Experientia 18:571–573CrossRefGoogle Scholar
  113. Ritossa FM (1964) Experimental activation of specific loci in polytene chromosomes of drosophila. Exp Cell Res 35:601–607PubMedCrossRefGoogle Scholar
  114. Rossmann A, Henderson B, Heidecker B, Seiler R, Fraedrich G, Singh M, Parson W, Keller M, Grubeck-Loebenstein B, Wick G (2008) T-cells from advanced atherosclerotic lesions recognize hHSP60 and have a restricted T-cell receptor repertoire. Exp Gerontol 43:229–237PubMedCrossRefGoogle Scholar
  115. Roth GA, Huffman MD, Moran AE, Feigin V, Mensah GA, Naghavi M, Murray CJ (2015) Global and regional patterns in cardiovascular mortality from 1990 to 2013. Circulation 132:1667–1678PubMedCrossRefGoogle Scholar
  116. Saini J, Sharma PK (2017) Clinical, prognostic and therapeutic significance of heat shock proteins in cancer. Curr Drug Targets 18:1478–1490. E-pub Ahead of PrintGoogle Scholar
  117. Sasaki N, Yamashita T, Takeda M, Shinohara M, Nakajima K, Tawa H, Usui T, Hirata K (2009) Oral anti-CD3 antibody treatment induces regulatory T cells and inhibits the development of atherosclerosis in mice. Circulation 120:1996–2005PubMedCrossRefGoogle Scholar
  118. Schett G, Xu Q, Amberger A, Van der Zee R, Recheis H, Willeit J, Wick G (1995) Autoantibodies against heat shock protein 60 mediate endothelial cytotoxicity. J Clin Invest 96:2569–2577PubMedPubMedCentralCrossRefGoogle Scholar
  119. Schett G, Metzler B, Mayr M, Amberger A, Niederwieser D, Gupta RS, Mizzen L, Xu Q, Wick G (1997) Macrophage-lysis mediated by autoantibodies to heat shock protein 65/60. Atherosclerosis 128:27–38PubMedCrossRefGoogle Scholar
  120. Schwartz CJ, Mitchell JR (1962) Cellular infiltration of the human arterial adventitia associated with atheromatous plaques. Circulation 26:73–78PubMedCrossRefGoogle Scholar
  121. Seitz CS, Kleindienst R, Xu Q, Wick G (1996) Coexpression of heat-shock protein 60 and intercellular-adhesion molecule-1 is related to increased adhesion of monocytes and T cells to aortic endothelium of rats in response to endotoxin. Lab Investig 74:241–252PubMedGoogle Scholar
  122. Shoenfeld Y, Harats D, George J (2000) Heat shock protein 60/65, beta 2-glycoprotein I and oxidized LDL as players in murine atherosclerosis. J Autoimmun 15:199–202PubMedCrossRefGoogle Scholar
  123. Sobel DO, Creswell K (2006) Characterization of anti-islet cytotoxic human T-cell clones from patients with type 1 diabetes mellitus. Autoimmunity 39:323–332PubMedCrossRefGoogle Scholar
  124. Song L, Leung C, Schindler C (2001) Lymphocytes are important in early atherosclerosis. J Clin Invest 108:251–259PubMedPubMedCentralCrossRefGoogle Scholar
  125. Spradling A, Penman S, Pardue ML (1975) Analysis of drosophila mRNA by in situ hybridization: sequences transcribed in normal and heat shocked cultured cells. Cell 4:395–404PubMedPubMedCentralCrossRefGoogle Scholar
  126. Sun J, Hartvigsen K, Chou MY, Zhang Y, Sukhova GK, Zhang J, Lopez-Ilasaca M, Diehl CJ, Yakov N, Harats D et al (2010) Deficiency of antigen-presenting cell invariant chain reduces atherosclerosis in mice. Circulation 122:808–820PubMedPubMedCentralCrossRefGoogle Scholar
  127. Taleb S, Tedgui A, Mallat Z (2008) Regulatory T-cell immunity and its relevance to atherosclerosis. J Intern Med 263:489–499PubMedCrossRefGoogle Scholar
  128. Thompson SJ, Butcher PD, Patel VK, Rook GA, Stanford J, van der Zee R, Elson CJ (1991) Modulation of pristane-induced arthritis by mycobacterial antigens. Autoimmunity 11:35–43PubMedCrossRefGoogle Scholar
  129. Tissieres A, Mitchell HK, Tracy UM (1974) Protein synthesis in salivary glands of Drosophila melanogaster: relation to chromosome puffs. J Mol Biol 84:389–398PubMedCrossRefGoogle Scholar
  130. Tytell M, Greenberg SG, Lasek RJ (1986) Heat shock-like protein is transferred from glia to axon. Brain Res 363:161–164PubMedCrossRefGoogle Scholar
  131. van Eden W, van der Zee R, Prakken B (2005) Heat-shock proteins induce T-cell regulation of chronic inflammation. Nat Rev Immunol 5:318–330PubMedCrossRefPubMedCentralGoogle Scholar
  132. van Eden W, Wick G, Albani S, Cohen I (2007) Stress, heat shock proteins, and autoimmunity: how immune responses to heat shock proteins are to be used for the control of chronic inflammatory diseases. Ann N Y Acad Sci 1113:217–237PubMedCrossRefGoogle Scholar
  133. van Puijvelde GH, van Es T, van Wanrooij EJ, Habets KL, de Vos P, van der Zee R, van Eden W, van Berkel TJ, Kuiper J (2007) Induction of oral tolerance to HSP60 or an HSP60-peptide activates T cell regulation and reduces atherosclerosis. Arterioscler Thromb Vasc Biol 27:2677–2683PubMedCrossRefGoogle Scholar
  134. Veres A, Szamosi T, Ablonczy M, Szamosi T Jr, Singh M, Karadi I, Romics L, Fust G, Prohaszka Z (2002) Complement activating antibodies against the human 60 kDa heat shock protein as a new independent family risk factor of coronary heart disease. Eur J Clin Investig 32:405–410CrossRefGoogle Scholar
  135. Wadhwa R, Takano S, Kaur K, Aida S, Yaguchi T, Kaul Z, Hirano T, Taira K, Kaul SC (2005) Identification and characterization of molecular interactions between mortalin/mtHsp70 and HSP60. Biochem J 391:185–190PubMedPubMedCentralCrossRefGoogle Scholar
  136. Waltner-Romen M, Falkensammer G, Rabl W, Wick G (1998) A previously unrecognized site of local accumulation of mononuclear cells. The vascular-associated lymphoid tissue. J Histochem Cytochem 46:1347–1350PubMedCrossRefGoogle Scholar
  137. Watanabe M, Sangawa A, Sasaki Y, Yamashita M, Tanaka-Shintani M, Shintaku M, Ishikawa Y (2007) Distribution of inflammatory cells in adventitia changed with advancing atherosclerosis of human coronary artery. J Atheroscler Thromb 14:325–331PubMedCrossRefGoogle Scholar
  138. Weiner HL, da Cunha AP, Quintana F, Wu H (2011) Oral tolerance. Immunol Rev 241:241–259PubMedPubMedCentralCrossRefGoogle Scholar
  139. Weitgasser R, Lechleitner M, Koch T, Galvan G, Muhlmann J, Steiner K, Hoppichler F (2003) Antibodies to heat-shock protein 65 and neopterin levels in patients with type 1 diabetes mellitus. Exp Clin Endocrinol Diabetes 111:127–131PubMedCrossRefGoogle Scholar
  140. Wick C (2016) Tolerization against atherosclerosis using heat shock protein 60. Cell Stress Chaperones 21:201–211PubMedCrossRefGoogle Scholar
  141. Wick G, Romen M, Amberger A, Metzler B, Mayr M, Falkensammer G, Xu Q (1997) Atherosclerosis, autoimmunity, and vascular-associated lymphoid tissue. FASEB J 11:1199–1207PubMedCrossRefGoogle Scholar
  142. Wick G, Knoflach M, Xu Q (2004) Autoimmune and inflammatory mechanisms in atherosclerosis. Annu Rev Immunol 22:361–403PubMedCrossRefGoogle Scholar
  143. Wick MC, Mayerl C, Backovic A, van der Zee R, Jaschke W, Dietrich H, Wick G (2008) In vivo imaging of the effect of LPS on arterial endothelial cells: molecular imaging of heat shock protein 60 expression. Cell Stress Chaperones 13:275–285PubMedPubMedCentralCrossRefGoogle Scholar
  144. Wick G, Jakic B, Buszko M, Wick MC, Grundtman C (2014) The role of heat shock proteins in atherosclerosis. Nat Rev Cardiol 11:516–529PubMedCrossRefGoogle Scholar
  145. Wick C, Onestingel E, Demetz E, Dietrich H, Wick G (2018) Oral tolerization with mycobacterial heat shock protein 65 reduces chronic experimental atherosclerosis in aged mice. Gerontology 64:36–48PubMedCrossRefGoogle Scholar
  146. Willeit J, Kiechl S (1993) Prevalence and risk factors of asymptomatic extracranial carotid artery atherosclerosis. A population-based study. Arterioscler Thromb 13:661–668PubMedCrossRefGoogle Scholar
  147. Wu CT, Ou LS, Yeh KW, Lee WI, Huang JL (2011) Serum heat shock protein 60 can predict remission of flare-up in juvenile idiopathic arthritis. Clin Rheumatol 30:959–965PubMedCrossRefGoogle Scholar
  148. Xiao Q, Mandal K, Schett G, Mayr M, Wick G, Oberhollenzer F, Willeit J, Kiechl S, Xu Q (2005) Association of serum-soluble heat shock protein 60 with carotid atherosclerosis: clinical significance determined in a follow-up study. Stroke 36:2571–2576PubMedCrossRefGoogle Scholar
  149. Xiong Q, Li J, Jin L, Liu J, Li T (2009) Nasal immunization with heat shock protein 65 attenuates atherosclerosis and reduces serum lipids in cholesterol-fed wild-type rabbits probably through different mechanisms. Immunol Lett 125:40–45PubMedCrossRefGoogle Scholar
  150. Xiong Q, Feng J, Zhang Y, Sun Y, Lu Y, Li T, Zhang X, Cao R, Jin L, Wu J (2016) Promotion of atherosclerosis in high cholesterol diet-fed rabbits by immunization with the P277 peptide. Immunol Lett 170:80–87PubMedCrossRefGoogle Scholar
  151. Xu QB, Oberhuber G, Gruschwitz M, Wick G (1990) Immunology of atherosclerosis: cellular composition and major histocompatibility complex class II antigen expression in aortic intima, fatty streaks, and atherosclerotic plaques in young and aged human specimens. Clin Immunol Immunopathol 56:344–359PubMedCrossRefGoogle Scholar
  152. Xu Q, Dietrich H, Steiner HJ, Gown AM, Schoel B, Mikuz G, Kaufmann SH, Wick G (1992) Induction of arteriosclerosis in normocholesterolemic rabbits by immunization with heat shock protein 65. Arterioscler Thromb 12:789–799PubMedCrossRefGoogle Scholar
  153. Xu Q, Kleindienst R, Waitz W, Dietrich H, Wick G (1993a) Increased expression of heat shock protein 65 coincides with a population of infiltrating T lymphocytes in atherosclerotic lesions of rabbits specifically responding to heat shock protein 65. J Clin Invest 91:2693–2702PubMedPubMedCentralCrossRefGoogle Scholar
  154. Xu Q, Willeit J, Marosi M, Kleindienst R, Oberhollenzer F, Kiechl S, Stulnig T, Luef G, Wick G (1993b) Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis. Lancet 341:255–259PubMedCrossRefGoogle Scholar
  155. Xu Q, Kleindienst R, Schett G, Waitz W, Jindal S, Gupta RS, Dietrich H, Wick G (1996) Regression of arteriosclerotic lesions induced by immunization with heat shock protein 65-containing material in normocholesterolemic, but not hypercholesterolemic, rabbits. Atherosclerosis 123:145–155PubMedCrossRefGoogle Scholar
  156. Xu Q, Kiechl S, Mayr M, Metzler B, Egger G, Oberhollenzer F, Willeit J, Wick G (1999) Association of serum antibodies to heat-shock protein 65 with carotid atherosclerosis: clinical significance determined in a follow-up study. Circulation 100:1169–1174PubMedCrossRefGoogle Scholar
  157. Xu Q, Schett G, Perschinka H, Mayr M, Egger G, Oberhollenzer F, Willeit J, Kiechl S, Wick G (2000) Serum soluble heat shock protein 60 is elevated in subjects with atherosclerosis in a general population. Circulation 102:14–20PubMedCrossRefGoogle Scholar
  158. Young RA, Elliott TJ (1989) Stress proteins, infection, and immune surveillance. Cell 59:5–8PubMedCrossRefGoogle Scholar
  159. Zanin-Zhorov A, Cohen IR (2013) Signaling via TLR2 and TLR4 directly down-regulates T cell effector functions: the regulatory face of danger signals. Front Immunol 4:211PubMedPubMedCentralCrossRefGoogle Scholar
  160. Zanin-Zhorov A, Nussbaum G, Franitza S, Cohen IR, Lider O (2003) T cells respond to heat shock protein 60 via TLR2: activation of adhesion and inhibition of chemokine receptors. FASEB J 17:1567–1569PubMedCrossRefGoogle Scholar
  161. Zhang X, He M, Cheng L, Chen Y, Zhou L, Zeng H, Pockley AG, Hu FB, Wu T (2008) Elevated heat shock protein 60 levels are associated with higher risk of coronary heart disease in Chinese. Circulation 118:2687–2693PubMedCrossRefGoogle Scholar
  162. Zhao L, Moos MP, Grabner R, Pedrono F, Fan J, Kaiser B, John N, Schmidt S, Spanbroek R, Lotzer K et al (2004) The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nat Med 10:966–973PubMedCrossRefGoogle Scholar
  163. Zhong Y, Tang H, Wang X, Zeng Q, Liu Y, Zhao XI, Yu K, Shi H, Zhu R, Mao X (2016) Intranasal immunization with heat shock protein 60 induces CD4(+) CD25(+) GARP(+) and type 1 regulatory T cells and inhibits early atherosclerosis. Clin Exp Immunol 183:452–468PubMedCrossRefGoogle Scholar
  164. Zhou X, Nicoletti A, Elhage R, Hansson GK (2000) Transfer of CD4(+) T cells aggravates atherosclerosis in immunodeficient apolipoprotein E knockout mice. Circulation 102:2919–2922PubMedCrossRefGoogle Scholar
  165. Zonneveld-Huijssoon E, Albani S, Prakken BJ, van Wijk F (2013) Heat shock protein bystander antigens for peptide immunotherapy in autoimmune disease. Clin Exp Immunol 171:20–29PubMedPubMedCentralCrossRefGoogle Scholar
  166. Zou Y, Dietrich H, Hu Y, Metzler B, Wick G, Xu Q (1998) Mouse model of venous bypass graft arteriosclerosis. Am J Pathol 153:1301–1310PubMedPubMedCentralCrossRefGoogle Scholar
  167. Zugel U, Schoel B, Yamamoto S, Hengel H, Morein B, Kaufmann SH (1995) Crossrecognition by CD8 T cell receptor alpha beta cytotoxic T lymphocytes of peptides in the self and the mycobacterial hsp60 which share intermediate sequence homology. Eur J Immunol 25:451–458PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Department of Medicine, Unit of Rheumatology, Karolinska InstitutetKarolinska University Hospital Solna, Center for Molecular Medicine (CMM)StockholmSweden

Personalised recommendations