Therapeutic Implications of Heat Shock Proteins in Cancer

  • Maxim ShevtsovEmail author
  • Gabriele Multhoff
Part of the Heat Shock Proteins book series (HESP, volume 16)


Evolutionary conserved members of the main heat shock protein families (HSP) are highly overexpressed in many tumor cells where they contribute to protein homeostasis, cytoprotection, cell survival, tumor progression and therapy resistance. Upon cell proliferation and differentiation but also in response to a large variety of different stressors, including anticancer radio- and/or chemotherapy, the synthesis of stress-inducible HSP is further upregulated. Therefore, the inhibition of members of the HSP90, HSP70 and small heat shock proteins (i.e., HSP20, clusterin) in cancer cells has emerged as a promising approach in translational and clinical oncology to break therapy resistance. Moreover, HSP have been found to play key roles in eliciting anti-tumor immune responses by acting as carriers for tumor-specific immunogenic peptides, chaperokines, adjuvants for antigen presentation, or targets for the innate immune system. HSP-based immunotherapies have shown promising results in the therapy of certain subtypes of tumors.


Adaptive immunity Cancer vaccine Clusterin Geldanamycin Heat shock proteins HSP20 HSP70 HSP90-families Immunotherapy Radicicol 









Adenosine diphosphate


Activator of Hsp90 ATPase


Antigen presenting cells


Adenosine triphosphate




Cell cycle division protein 37


Common lymphatic endothelial and vascular endothelial receptor-1


Chronic lymphocytic leukemia


Chronic myelogenous leukemia


Epigallocatechin gallate


Epidermal growth factor


Epidermal growth factor receptor


Fascilin EGF-like scavenger receptor-1




Gastrointestinal stromal tumors


Hepatocellular carcinoma


Histone deacetylase family


Human epidermal growth factor receptor 2


HSP70/HSP90 organizing protein


Heat shock factor 1


Heat shock protein (family)


Interferon gamma




17-allylamino-17-demethoxygeldanamycin hydroquinone hydrochloride


Low-density lipoprotein receptor-1


Major histocompatibility complex


1-ethyl-2-[[3-ethyl-5-(3-methylbenzothiazolin 2-yliden)]-4-oxothiazolidin-2-ylidenemethyl] pyridinium chloride


Mechanistic target of rapamycin


Nucleotide exchange factor


Nuclear factor kappa-light-chain-enhancer of activated B cells

NK cells

Natural killer cells


Nitric oxide


Platycodin D


Phenylethynesulfonamide (pifithrin-μ)




Reactive oxygen species


Small clusterin


Scavenger receptor expressed by endothelial cells-1




Toll-like receptor



The study was supported by the Alexander von Humboldt Stiftung, by a grant from Russian Foundation for Basic Research 15-08-08148A, in part by a grant of the Russian Science Foundation 14-50-00068 and by the Federal Agency of Scientific Organizations, Russia and by a grant of the Deutsche Forschungsgemeinschaft (DFG SFB824/3, STA 1520/1-1, MAP), BMBF (01GU0823, 02NUK038A) and BMWi (AiF project), Germany. This work was supported by the german Research Foundation (DFG) and the Technische Universität München within the funding programme Open Access Publishing. The authors are grateful to Nan-Jong Lee for preparation of the Figures.


  1. Aregbe AO, Sherer EA, Egorin MJ, Scher HI, Solit DB, Ramanathan RK, Ramalingam S, Belani CP, Ivy PS, Bies RR (2012) Population pharmacokinetic analysis of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG) in adult patients with solid tumors. Cancer Chemother Pharmacol 70(1):201–205PubMedPubMedCentralCrossRefGoogle Scholar
  2. Arnold-Schild D, Hanau D, Spehner D, Schmid C, Rammensee HG, de la SH et al (1999) Cutting edge: receptor-mediated endocytosis of heat shock proteins by professional antigen-presenting cells. J Immunol 162:3757–3760PubMedGoogle Scholar
  3. Asea A (2006) Initiation of the immune response by extracellular Hsp72: chaperokine activity of Hsp72. Curr Immunol Rev 2:209–215PubMedPubMedCentralCrossRefGoogle Scholar
  4. Asea A, Kraeft SK, Kurt-Jones EA, Stevenson MA, Chen LB, Finberg RW et al (2000) HSP70 stimulates cytokine production through a CD14-dependant pathway, demonstrating its dual role as a chaperone and cytokine. Nat Med 6:435–442PubMedPubMedCentralCrossRefGoogle Scholar
  5. Asea A, Rehli M, Kabingu E, Boch JA, Bare O, Auron PE et al (2002) Novel signal transduction pathway utilized by extracellular HSP70: role of TLR2 and TLR4. J Biol Chem 277:15028–15034CrossRefPubMedPubMedCentralGoogle Scholar
  6. Bagatell R, Gore L, Egorin MJ, Ho R, Heller G, Boucher N, Zuhowski EG, Whitlock JA, Hunger SP, Narendran A, Katzenstein HM, Arceci RJ, Boklan J, Herzog CE, Whitesell L, Ivy SP, Trippett TM (2007) Phase I pharmacokinetic and pharmacodynamics study of 17-N-allylamino-17-demethoxygeldanamycin in pediatric patients with recurrent or refractory solid tumors: a pediatric oncology experimental therapeutics investigators consortium study. Clin Cancer Res 13(6):1783–1788PubMedCrossRefGoogle Scholar
  7. Banerji U, O’Donnell A, Scurr M, Pacey S, Stapleton S, Asad Y, Simmons L, Maloney A, Raynaud F, Campbell M, Walton M, Lakhani S, Kaye S, Workman P, Judson I (2005) Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J Clin Oncol 23(18):4152–4161PubMedCrossRefGoogle Scholar
  8. Basu S, Binder RJ, Ramalingam T, Srivastava PK (2001) CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity 14:303–313PubMedCrossRefGoogle Scholar
  9. Becker T, Hartl FU, Wieland F (2002) CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes. J Cell Biol 158:1277–1285PubMedPubMedCentralCrossRefGoogle Scholar
  10. Belli F, Testori A, Rivoltini L, Maio M, Andreola G, Sertoli MR et al (2002) Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 20:4169–4180PubMedCrossRefGoogle Scholar
  11. Bendell JC, Bauer TM, Lamar R, Joseph M, Penley W, Thompson DS, Spigel DR, Owera R, Lane CM, Earwood C, Burris HA 3rd. (2016) A phase 2 study of the Hsp90 inhibitor AUY922 as treatment for patients with refractory gastrointestinal stromal tumors. Cancer Investig 34(6):265–270CrossRefGoogle Scholar
  12. Berwin B, Hart JP, Rice S, Gass C, Pizzo SV, Post SR et al (2003) Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells. EMBO J 22:6127–6136PubMedPubMedCentralCrossRefGoogle Scholar
  13. Biassoni R (2009) Human natural killer receptors, co-receptors, and their ligands. Curr Protoc Immunol., Chapter 14:Unit14.10.
  14. Binder RJ, Han DK, Srivastava PK (2000a) CD91: a receptor for heat shock protein gp96. Nat Immunol 1:151–155PubMedCrossRefGoogle Scholar
  15. Binder RJ, Harris ML, Menoret A, Srivastava PK (2000b) Saturation, competition, and specificity in interaction of heat shock proteins (hsp) gp96, hsp90, and hsp70 with CD11b+ cells. J Immunol 165:2582–2587PubMedCrossRefGoogle Scholar
  16. Binder RJ, Zhou YJ, Messmer MN, Pawaria S (2012) CD91-dependent modulation of immune responses by heat shock proteins: a role in autoimmunity. Autoimmune Dis 2012:863041PubMedPubMedCentralGoogle Scholar
  17. Bischofberger P, Han W, Feifel B, Schonfeld HJ, Christen P (2003) D-peptides as inhibitors of the DnaK/DnaJ/GrpE chaperone system. J Biol Chem 278:19044–19047PubMedCrossRefGoogle Scholar
  18. Blachere NE, Li Z, Chandawarkar RY, Suto R, Jaikaria NS, Basu S et al (1997) Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med 186:1315–1322PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bloch O, Crane CA, Fuks Y, Kaur R, Aghi MK, Berger MS et al (2014) Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. Neuro-Oncology 16:274–279PubMedCrossRefPubMedCentralGoogle Scholar
  20. Boll B et al (2009) Heat shock protein 90 inhibitor BIIB021 (CNF2024) depletes NF-kappaB and sensitizes Hodgkin’s lymphoma cells for natural killer cell-mediated cytotoxicity. Clin Cancer Res 15:5108–5116PubMedCrossRefGoogle Scholar
  21. Borrego F, Masilamani M, Marusina AI, Tang X, Coligan JE (2006) The CD94/NKG2 family of receptors: from molecules and cells to clinical relevance. Immunol Res 35:263–278PubMedCrossRefGoogle Scholar
  22. Botzler C, Li G, Issels RD, Multhoff G (1998) Definition of extracellular localized epitopes of Hsp70 involved in an NK immune response. Cell Stress Chaperones 3:6–11PubMedPubMedCentralCrossRefGoogle Scholar
  23. Breuninger S, Erl J, Knape C, Gunther S, Regel I, Rodel F et al (2014) Quantitative analysis of liposomal heat shock protein 70 (Hsp70) in the blood of tumor patients using an novel lipHsp70 ELISA. J Clin Cell Immunol 5:2–10CrossRefGoogle Scholar
  24. Britten CD, Rowinsky EK, Baker SD, Weiss GR, Smith L, Stephenson J et al (2000) A phase I and pharmacokinetic study of the mitochondrial-specific rhodacyanine dye analog MKT 077. Clin Cancer Res 6:42–49PubMedGoogle Scholar
  25. Brough PA, Aherne W, Barril X et al (2008) 4,5-diarylisoxazole Hsp90 chaperone inhibitors: potential therapeutic agents for the treatment of cancer. J Med Chem 51:196–218PubMedCrossRefGoogle Scholar
  26. Burlison JA, Blagg BS (2006) Synthesis and evaluation of coumermycin A1 analogues that inhibit the Hsp90 protein folding machinery. Org Lett 8:4855–4858PubMedCrossRefGoogle Scholar
  27. Castelli C, Rivoltini L, Rini F, Belli F, Testori A, Maio M et al (2004) Heat shock proteins: biological functions and clinical application as personalized vaccines for human cancer. Cancer Immunol Immunother 53:227–233PubMedCrossRefGoogle Scholar
  28. Castro JE et al (2005) ZAP-70 is a novel conditional heat shock protein 90 (Hsp90) client: inhibition of Hsp90 leads to ZAP-70 degradation, apoptosis, and impaired signaling in chronic lymphocytic leukemia. Blood 106:2506–2512PubMedPubMedCentralCrossRefGoogle Scholar
  29. Cercek A, Shia J, Gollub M, Chou JF, Capanu M, Raasch P, Reidy-Lagunes D, Proia DA, Vakiani E, Solit DB et al (2014) Ganetespib, a novel Hsp90 inhibitor in patients with KRAS mutated and wild type, refractory metastatic colorectal cancer. Clin Colorectal Cancer 13:207–212PubMedPubMedCentralCrossRefGoogle Scholar
  30. Chai RC, Vieusseux JL, Lang BJ, Nguyen CH, Kouspou MM, Britt KL, Price JT (2017) Histone deacetylase activity mediates acquired resistance towards structurally diverse HSP90 inhibitors. Mol Oncol 11(5):567–583PubMedPubMedCentralCrossRefGoogle Scholar
  31. Chalmin F, Ladoire S, Mignot G, Vincent J, Bruchard M, Remy-Martin JP et al (2010) Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. J Clin Invest 120:457–471PubMedPubMedCentralGoogle Scholar
  32. Chandawarkar RY, Wagh MS, Srivastava PK (1999) The dual nature of specific immunological activity of tumor-derived gp96 preparations. J Exp Med 189:1437–1442PubMedPubMedCentralCrossRefGoogle Scholar
  33. Chandawarkar RY, Wagh MS, Kovalchin JT, Srivastava P (2004) Immune modulation with high-dose heat-shock protein gp96: therapy of murine autoimmune diabetes and encephalomyelitis. Int Immunol 16:615–624PubMedCrossRefGoogle Scholar
  34. Cheung KM et al (2005) The identification, synthesis, protein crystal structure and in vitro biochemical evaluation of a new 3,4-diarylpyrazole class of Hsp90 inhibitors. Bioorg Med Chem Lett 15:3338–3343PubMedCrossRefGoogle Scholar
  35. Chi KN, Eisenhauer E, Fazli L, Jones EC, Goldenberg SL, Powers J et al (2005) A phase I pharmacokinetic and pharmacodynamic study of OGX-011, a 2-methoxyethyl antisense oligonucleotide to clusterin, in patients with localized prostate cancer. J Natl Cancer Inst 97:1287–1296PubMedCrossRefGoogle Scholar
  36. Chi KN, Hotte SJ, Yu E, Tu D, Eigl BJ, Tannock I et al (2009) Mature results of a randomized phase II study of OGX-011 in combination with docetaxel/prednisone versus docetaxel/prednisone in patients with metastatic castration-resistant prostate cancer. J Clin Oncol 27 Abstract 5012Google Scholar
  37. Chi KN, Hotte SJ, Yu EY, Tu D, Eigl BJ, Tannock I et al (2010) Randomized phase II study of docetaxel and prednisone with or without OGX-011 in patients with metastatic castration-resistant prostate cancer. J Clin Oncol 28:4247–4254PubMedCrossRefGoogle Scholar
  38. Chi KN, Yu EY, Jacobs C, Bazov J, Kollmannsberger C, Higano CS et al (2016) A phase I dose-escalation study of apatorsen (OGX-427), an antisense inhibitor targeting heat shock protein 27 (Hsp27), in patients with castration-resistant prostate cancer and other advanced cancers. Ann Oncol 27(6):1116–1122PubMedCrossRefGoogle Scholar
  39. Chi KN, Higano CS, Blumenstein B, Ferrero JM, Reeves J, Feyerabend S et al (2017) Custirsen in combination with docetaxel and prednisone for patients with metastatic castration-resistant prostate cancer (SYNERGY trial): a phase 3, multicentre, open-label, randomised trial. Lancet Oncol 18(4):473–485PubMedCrossRefGoogle Scholar
  40. Chia S, Dent S, Ellard S, Ellis PM, Vandenberg T, Gelmon K et al (2009) Phase II trial of OGX-011 in combination with docetaxel in metastatic breast cancer. Clin Cancer Res 15(2):708–713PubMedCrossRefGoogle Scholar
  41. Chiosis G (2006) Discovery and development of purine-scaffold Hsp90 inhibitors. Curr Top Med Chem 6:1183–1191PubMedCrossRefGoogle Scholar
  42. Chiosis G, Vilenchik M, Kim J, Solit D (2004) Hsp90: the vulnerable chaperone. Drug Discov Today 9:881–888PubMedCrossRefGoogle Scholar
  43. Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103PubMedPubMedCentralCrossRefGoogle Scholar
  44. Davenport EL, Zeisig A, Aronson LI, Moore HE, Hockley S, Gonzalez D et al (2010) Targeting heat shock protein 72 enhances Hsp90 inhibitor-induced apoptosis in myeloma. Leukemia 24:1804–1807PubMedCrossRefGoogle Scholar
  45. Dikalov S, Rumyantseva GV, Piskunov AV, Weiner LM (1992) Role of quinone-iron (III) interaction in NADPH-dependent enzymatic generation of hydroxyl radicals. Biochemistry 31:8947–8953PubMedCrossRefGoogle Scholar
  46. Dikalov S, Landmesser U, Harrison DG (2002) Geldanamycin leads to superoxide formation by enzymatic and non-enzymatic cycling. J Biol Chem 277:25480–25485PubMedCrossRefGoogle Scholar
  47. Doi T, Onozawa Y, Fuse N, Yoshino T, Yamazaki K, Watanabe J, Akimov M, Robson M, Boku N, Ohtsu A (2014) Phase I dose-escalation study of the HSP90 inhibitor AUY922 in Japanese patients with advanced solid tumors. Cancer Chemother Pharmacol 74(3):629–636PubMedPubMedCentralCrossRefGoogle Scholar
  48. Dorard C, de Thonel A, Collura A, Marisa L, Svrcek M, Lagrange A et al (2011) Duval, expression of a mutant HSP110 sensitizes colorectal cancer cells to chemotherapy and improves disease prognosis. Nat Med 17:1283–1289PubMedCrossRefGoogle Scholar
  49. Egorin MJ, Lagattuta TF, Hamburger DR, Covey JM, White KD, Musser SM, Eiseman JL (2002) Pharmacokinetics, tissue distribution, and metabolism of 17-(dimethylaminoethylamino)-17-demethox-ygeldanamycin (NSC 707545) in CD2F1 mice and fischer 344 rats. Cancer Chemother Pharmacol 49:7–19PubMedCrossRefGoogle Scholar
  50. Elsner L, Muppala V, Gehrmann M, Lozano J, Malzahn D, Bickeboller H et al (2007) The heat shock protein Hsp70 promotes mouse NK cell activity against tumors that express inducible NKG2D ligands. J Immunol 179:5523–5533CrossRefGoogle Scholar
  51. Fadden P et al (2010) Application of chemoproteomics to drug discovery: identification of a clinical candidate targeting hsp90. Chem Biol 17:686–694PubMedCrossRefGoogle Scholar
  52. Fernández-Fernández, M.R., Gragera, M., Ochoa-Ibarrola, L.., (2017) Quintana-Gallardo, L., Valpuesta, J.M. (2017) Hsp70 – a master regulator in protein degradation. FEBS Lett. [Epub ahead of print] ReviewPubMedCrossRefGoogle Scholar
  53. Fewell SW, Day BW, Brodsky JL (2001) Identification of an inhibitor of hsc70- mediated protein translocation and ATP hydrolysis. J Biol Chem 276:910–914PubMedCrossRefGoogle Scholar
  54. Gartner EM, Silverman P, Simon M, Flaherty L, Abrams J, Ivy P, Lorusso PM (2012) A phase II study of 17-allylamino-17-demethoxygeldanamycin in metastatic or locally advanced, unresectable breast cancer. Breast Cancer Res Treat 131(3):933–937PubMedCrossRefGoogle Scholar
  55. Gaspar N, Sharp SY, Pacey S, Jones C, Walton M, Vassal G, Eccles S, Pearson A, Workman P (2009) Acquired resistance to 17-allylamino-17-demethoxygeldanamycin (17-AAG, tanespimycin) in glioblastoma cells. Cancer Res 69:1966–1975PubMedPubMedCentralCrossRefGoogle Scholar
  56. Gastpar R, Gehrmann M, Bausero MA, Asea A, Gross C, Schroeder JA et al (2005) Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res 65:5238–5247PubMedPubMedCentralCrossRefGoogle Scholar
  57. Gehrmann M, Schmetzer H, Eissner G, Haferlach T, Hiddemann W, Multhoff G (2003) Membrane-bound heat shock protein 70 (Hsp70) in acute myeloid leukemia: a tumor specific recognition structure for the cytolytic activity of autologous NK cells. Haematologica 88:474–476Google Scholar
  58. Geng H, Zhang GM, Xiao H, Yuan Y, Li D, Zhang H et al (2006) HSP70 vaccine in combination with gene therapy with plasmid DNA encoding sPD-1 overcomes immune resistance and suppresses the progression of pulmonary metastatic melanoma. Int J Cancer 118:2657–2664PubMedCrossRefGoogle Scholar
  59. Goetz MP, Toft DO, Ames MM, Erlichman C (2003) The hsp90 chaperone complex as a novel target for cancer therapy. Ann Oncol 14:1169–1176PubMedCrossRefGoogle Scholar
  60. Gong J, Zhu B, Murshid A, Adachi H, Song B, Lee A et al (2009) T cell activation by heat shock protein 70 vaccine requires TLR signaling and scavenger receptor expressed by endothelial cells-1. J Immunol 183:3092–3098PubMedPubMedCentralCrossRefGoogle Scholar
  61. Gross C, Hansch D, Gastpar R, Multhoff G (2003a) Interaction of heat shock protein 70 peptide with NK cells involves the NK receptor CD94. Biol Chem 384:267–279CrossRefGoogle Scholar
  62. Gross C, Koelch W, DeMaio A, Arispe N, Multhoff G (2003b) Cell surface-bound heat shock protein 70 (Hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme B. J Biol Chem 278:41173–41181CrossRefGoogle Scholar
  63. Gross C, Schmidt-Wolf IG, Nagaraj S, Gastpar R, Ellwart J, Kunz-Schughart LA et al (2003c) Heat shock protein 70-reactivity is associated with increased cell surface density of CD94/CD56 on primary natural killer cells. Cell Stress Chaperones 8:348–360PubMedPubMedCentralCrossRefGoogle Scholar
  64. Guo F, Rocha K, Bali P, Pranpat M, Fiskus W, Boyapalle S et al (2005) Abrogation of heat shock protein 70 induction as a strategy to increase antileukemia activity of heat shock protein 90 inhibitor 17-allylamino-demethoxy geldanamycin. Cancer Res 65:10536–10544PubMedCrossRefGoogle Scholar
  65. Gurbuxani S, Schmitt E, Cande C, Parcellier A, Hammann A, Daugas E et al (2003) Heat shock protein 70 binding inhibits the nuclear import of apoptosis-inducing factor. Oncogene 22:6669–6678PubMedCrossRefGoogle Scholar
  66. Guzhova IV, Shevtsov MA, Abkin SV, Pankratova KM, Margulis BA (2013) Intracellular and extracellular Hsp70 chaperone as a target for cancer therapy. Int J Hyperth 29:399–408CrossRefGoogle Scholar
  67. Hammond DB (2004) What ASCO does for its members. J Clin Oncol 22:2251–2252PubMedCrossRefGoogle Scholar
  68. Heath EI, Hillman DW, Vaishampayan U, Sheng S, Sarkar F, Harper F, Gaskins M, Pitot HC, Tan W, Ivy SP (2008a) A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin Cancer Res 14:7940–7946PubMedPubMedCentralCrossRefGoogle Scholar
  69. Heath EI, Hillman DW, Vaishampayan U, Sheng S, Sarkar F, Harper F, Gaskins M, Pitot HC, Tan W, Ivy SP, Pili R, Carducci MA, Erlichman C, Liu G (2008b) A phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with hormone-refractory metastatic prostate cancer. Clin Cancer Res 14(23):7940–7946PubMedPubMedCentralCrossRefGoogle Scholar
  70. Heike M, Hertkorn C, Reitsma DJ, Kommoss F, Simiantonaki N, Woelfel T et al (2000) Pilot trial of vaccination with autologous tumor-derived GP96 heat shock protein-peptide complex (HSPPC-96) in patients after surgery for gastric carcinoma. Proc Am Soc Clin Oncol 19:1825Google Scholar
  71. Hendrickson AE, Oberg AL, Glaser G, Camoriano JK, Peethambaram PP, Colon-Otero G, Erlichman C, Ivy SP, Kaufmann SH, Karnitz LM, Haluska P (2012) A phase II study of gemcitabine in combination with tanespimycin in advanced epithelial ovarian and primary peritoneal carcinoma. Gynecol Oncol 124(2):210–215PubMedCrossRefGoogle Scholar
  72. Hertkorn C, Lehr A, Wölfel T, Junginger T, Dippold WG, Galle PR et al (2002) Phase I trial of vaccination with autologous tumor-derived gp96 in patients after surgery for gastric cancer. Proc Am Soc Clin Oncol 21:30aGoogle Scholar
  73. Hollingshead M, Alley M, Burger AM et al (2005) In vivo anti-tumor efficacy of 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride), a water-soluble geldanamycin derivative. Cancer Chemother Pharmacol 56:115–125PubMedCrossRefGoogle Scholar
  74. Hong D, Said R, Falchook G, Naing A, Moulder S, Tsimberidou AM, Galluppi G, Dakappagari N, Storgard C, Kurzrock R, Rosen LS (2013a) Phase I study of BIIB028, a selective heat shock protein 90 inhibitor, in patients with refractory metastatic or locally advanced solid tumors. Clin Cancer Res 19(17):4824–4831PubMedPubMedCentralCrossRefGoogle Scholar
  75. Hong DS et al (2013b) Targeting the molecular chaperone heat shock protein 90 (HSP90): lessons learned and future directions. Cancer Treat Rev 39:375–387PubMedCrossRefGoogle Scholar
  76. Horejsi Z, Takai H, Adelman CA, Collis SJ, Flynn H, Maslen S, Skehel JM, de Lange T, Boulton SJ (2010) CK2 phospho-dependent binding of R2TP complex to TEL2 is essential for mTOR and SMG1 stability. Mol Cell 39:839–850PubMedCrossRefGoogle Scholar
  77. Hosokawa N, Hirayoshi K, Kudo H, Takechi H, Aoike A, Kawai K, Nagata K (1992) Inhibition of the activation of heat shock factor in vivo and in vitro by flavonoids. Mol Cell Biol 12:3490–3498PubMedPubMedCentralCrossRefGoogle Scholar
  78. Hubbard J, Erlichman C, Toft DO, Qin R, Stensgard BA, Felten S, Ten Eyck C, Batzel G, Ivy SP, Haluska P (2011) Phase I study of 17-allylamino-17 demethoxygeldanamycin, gemcitabine and/or cisplatin in patients with refractory solid tumors. Investig New Drugs 29(3):473–480CrossRefGoogle Scholar
  79. Ito A, Matsuoka F, Honda H, Kobayashi T (2004) Anti-tumor effects of combined therapy of recombinant heat shock protein 70 and hyperthermia using magnetic nanoparticles in an experimental subcutaneous murine melanoma. Cancer Immunol Immunother 53:26–32PubMedCrossRefGoogle Scholar
  80. Iyer G, Morris MJ, Rathkopf D, Slovin SF, Steers M, Larson SM, Schwartz LH, Curley T, DeLaCruz A, Ye Q, Heller G, Egorin MJ, Ivy SP, Rosen N, Scher HI, Solit DB (2012) A phase I trial of docetaxel and pulse-dose 17-allylamino-17-demethoxygeldanamycin in adult patients with solid tumors. Cancer Chemother Pharmacol 69(4):1089–1097PubMedCrossRefGoogle Scholar
  81. Jakob U, Gaestel M, Engel K, Buchner J (1993) Small heat shock proteins are molecular chaperones. J Biol Chem 268:1517–1520PubMedGoogle Scholar
  82. Janetzki S, Palla D, Rosenhauer V, Lochs H, Lewis JJ, Srivastava PK (2000) Immunization of cancer patients with autologous cancer-derived heat shock protein gp96 preparations: a pilot study. Int J Cancer 88:232–238PubMedCrossRefGoogle Scholar
  83. Jego G, Hazoume A, Seigneuric R, Garrido C (2010) Targeting heat shock proteins in cancer. Cancer Lett. PubMedCrossRefGoogle Scholar
  84. Jhaveri K, Miller K, Rosen L, Schneider B, Chap L, Hannah A, Zhong Z, Ma W, Hudis C, Modi S (2012) A phase I dose-escalation trial of trastuzumab and alvespimycin hydrochloride (KOS-1022; 17 DMAG) in the treatment of advanced solid tumors. Clin Cancer Res 18(18):5090–5098PubMedCrossRefGoogle Scholar
  85. Jinwal UK, Miyata Y, Koren J 3rd, Jones JR, Trotter JH, Chang L et al (2009) Chemical manipulation of hsp70 ATPase activity regulates tau stability. J Neurosci 29:12079–12088PubMedPubMedCentralCrossRefGoogle Scholar
  86. Johnson ML et al (2013) A phase II study of HSP90 inhibitor AUY922 and erlotinib (E) for patients (pts) with EGFR-mutant lung cancer and acquired resistance (AR) to EGFR tyrosine kinase inhibitors (EGFR TKIs). J Clin Oncol 31(Suppl):8036Google Scholar
  87. Johnson ML, Yu HA, Hart EM, Weitner BB, Rademaker AW, Patel JD, Kris MG, Riely GJ (2015) Phase I/II study of HSP90 inhibitor AUY922 and erlotinib for EGFR-mutant lung cancer with acquired resistance to epidermal growth factor receptor tyrosine kinase inhibitors. J Clin Oncol 33:1666–1673PubMedPubMedCentralCrossRefGoogle Scholar
  88. Johnston RN, Kucey BL (1988) Competitive inhibition of hsp70 gene expression causes thermosensitivity. Science 242:1551–1554PubMedCrossRefGoogle Scholar
  89. Kamal A, Thao L, Sensintaffar J, Zhang L, Boehm MF, Fritz LC et al (2003) A high-affinity conformation of Hsp90 confers tumour selectivity on Hsp90 inhibitors. Nature 425:407–410PubMedCrossRefGoogle Scholar
  90. Kampinga HH, Hageman J, Vos MJ, Kubota H, Tanguay RM, Bruford EA, Cheetham ME, Chen B, Hightower LE (2009) Guidelines for the nomenclature of the human heat shock proteins. Cell Stress Chaperones 14:105–111PubMedCrossRefGoogle Scholar
  91. Kaur J, Ralhan R (2000) Induction of apoptosis by abrogation of HSP70 expression in human oral cancer cells. Int J Cancer 85:1–5PubMedCrossRefGoogle Scholar
  92. Kim JG, Lee SC, Kim OH, Kim KH, Song KY, Lee SK, Choi BJ, Jeong W, Kim SJ (2017) HSP90 inhibitor 17-DMAG exerts anticancer effects against gastric cancer cells principally by altering oxidant-antioxidant balance. Oncotarget. 2017 Apr 10. [Epub ahead of print]
  93. Koldewey P, Horowitz S, Bardwell JCA (2017) Chaperone-client interactions: non-specificity engenders multifunctionality. J Biol Chem 292(29):12010–12017PubMedPubMedCentralCrossRefGoogle Scholar
  94. Kong A, Rea D, Ahmed S, Beck JT, López López R, Biganzoli L, Armstrong AC, Aglietta M, Alba E, Campone M, Hsu Schmitz SF, Lefebvre C, Akimov M, Lee SC (2016) Phase 1B/2 study of the HSP90 inhibitor AUY922 plus trastuzumab in metastatic HER2-positive breast cancer patients who have progressed on trastuzumab-based regimen. Oncotarget 7(25):37680–37692PubMedPubMedCentralCrossRefGoogle Scholar
  95. Koya K, Li Y, Wang H, Ukai T, Tatsuta N, Kawakami M et al (1996) MKT-077, a novel rhodacyanine dye in clinical trials, exhibits anticarcinoma activity in preclinical studies based on selective mitochondrial accumulation. Cancer Res 56:538–543PubMedGoogle Scholar
  96. Kramer OH, Mahboobi S, Sellmer A (2014) Drugging the HDAC6-HSP90 interplay in malignant cells. Trends Pharmacol Sci 35:501–509PubMedCrossRefGoogle Scholar
  97. Krause SW, Gastpar R, Andreesen R, Gross C, Ullrich H, Thonigs G et al (2004) Treatment of colon and lung cancer patients with ex vivo heat shock protein 70-peptide-activated, autologous natural killer cells: a clinical phase I trial. Clin Cancer Res 10:3699–3707PubMedCrossRefGoogle Scholar
  98. Kummar S, Gutierrez ME, Gardner ER, Chen X, Figg WD, Zajac-Kaye M, Chen M, Steinberg SM, Muir CA, Yancey MA, Horneffer YR, Juwara L, Melillo G, Ivy SP, Merino M, Neckers L, Steeg PS, Conley BA, Giaccone G, Doroshow JH, Murgo AJ (2010) Phase I trial of 17-dimethylaminoethylamino-17-demethoxygeldanamycin (17-DMAG), a heat shock protein inhibitor, administered twice weekly in patients with advanced malignancies. Eur J Cancer 46(2):340–347PubMedCrossRefGoogle Scholar
  99. Lancet JE, Gojo I, Burton M, Quinn M, Tighe SM, Kersey K, Zhong Z, Albitar MX, Bhalla K, Hannah AL, Baer MR (2010) Phase I study of the heat shock protein 90 inhibitor alvespimycin (KOS-1022, 17-DMAG) administered intravenously twice weekly to patients with acute myeloid leukemia. Leukemia 24(4):699–705PubMedCrossRefGoogle Scholar
  100. Laskin JJ, Nicholas G, Lee C, Gitlitz B, Vincent M, Cormier Y et al (2012) Phase I/II trial of custirsen (OGX-011), an inhibitor of clusterin, in combination with a gemcitabine and platinum regimen in patients with previously untreated advanced non-small cell lung cancer. J Thorac Oncol 7(3):579–586PubMedCrossRefGoogle Scholar
  101. Lee JS, Lee JJ, Seo JS (2005) HSP70 deficiency results in activation of c-Jun N- terminal kinase, extracellular signal-regulated kinase, and caspase-3 in hyperosmolarity-induced apoptosis. J Biol Chem 280:6634–6641PubMedCrossRefGoogle Scholar
  102. Leu JI, Pimkina J, Frank A, Murphy ME, George DL (2009) A small molecule inhibitor of inducible heat shock protein 70. Mol Cell 36:15–27PubMedPubMedCentralCrossRefGoogle Scholar
  103. Leu JI, Pimkina J, Pandey P, Murphy ME, George DL (2011) HSP70 inhibition by the small-molecule 2-phenylethynesulfonamide impairs protein clearance pathways in tumor cells. Mol Cancer Res 9:936–947PubMedPubMedCentralCrossRefGoogle Scholar
  104. Li Z, Srivastava PK (1993) Tumor rejection antigen gp96/grp94 is an ATPase: implications for protein folding and antigen presentation. EMBO J 12:3143–3151PubMedPubMedCentralCrossRefGoogle Scholar
  105. Li Z, Menoret A, Srivastava P (2002) Roles of heat-shock proteins in antigen presentation and cross-presentation. Curr Opin Immunol 14:45–51PubMedCrossRefGoogle Scholar
  106. Li JL, Liu HL, Zhang XR, Xu JP, Hu WK, Liang M et al (2009a) A Phase I trial of intra-tumoral administration of recombinant oncolytic adenovirus overexpressing HSP70 in advanced solid tumor patients. Gene Ther 16:376–382PubMedCrossRefGoogle Scholar
  107. Li Y, Zhang T, Sun D (2009b) New developments in HSp90 inhibitors as anti-cancer therapeutics: mechanisms, clinical perspective and more potential. Drug Resist Updat 12(1–2):17–27PubMedPubMedCentralCrossRefGoogle Scholar
  108. Li T, Chen X, Dai XY, Wei B, Weng QJ, Chen X, Ouyang DF, Yan R, Huang ZJ, Jiang HL, Zhu H, Lu JJ (2017) Novel Hsp90 inhibitor platycodin D disrupts Hsp90/Cdc37 complex and enhances the anticancer effect of mTOR inhibitor. Toxicol Appl Pharmacol 330:65–73PubMedCrossRefGoogle Scholar
  109. Lindquist S (1986) The heat-shock response. Annu Rev Biochem 55:1151–1191PubMedCrossRefPubMedCentralGoogle Scholar
  110. Liu S, Street TO (2016) 5′-N-ethylcarboxamidoadenosine is not a paralog-specific Hsp90 inhibitor. Protein Sci 25(12):2209–2215PubMedPubMedCentralCrossRefGoogle Scholar
  111. Lundgren K et al (2009) BIIB021, an orally available, fully synthetic small-molecule inhibitor of the heat shock protein Hsp90. Mol Cancer Ther 8:921–929PubMedCrossRefPubMedCentralGoogle Scholar
  112. Maeda Y, Yoshimura K, Matsui H, Shindo Y, Tamesa T, Tokumitsu Y et al (2015) Dendritic cells transfected with heat-shock protein 70 messenger RNA for patients with hepatitis C virus-related hepatocellular carcinoma: a Phase I dose escalation clinical trial. Cancer Immunol Immunother 64:1047–1056PubMedCrossRefPubMedCentralGoogle Scholar
  113. Maki RG, Livingston PO, Lewis JJ, Janetzki S, Klimstra D, Desantis D et al (2007) A phase I pilot study of autologous heat shock protein vaccine HSPPC-96 in patients with resected pancreatic adenocarcinoma. Dig Dis Sci 52:1964–1972PubMedCrossRefPubMedCentralGoogle Scholar
  114. Maloney A, Workman P (2002) Hsp90 as a new therapeutic target for cancer therapy: the story unfolds. Expert Opin Biol Ther 2:3–24PubMedCrossRefPubMedCentralGoogle Scholar
  115. Marcu MG, Chadli A, Bouhouche I, Catelli M, Neckers LM (2000a) The heat shock protein 90 antagonist novobiocin interacts with a previously unrecognized ATP-binding domain in the carboxyl terminus of the chaperone. J Biol Chem 275:37181–37186PubMedCrossRefPubMedCentralGoogle Scholar
  116. Marcu MG, Schulte TW, Neckers L (2000b) Novobiocin and related coumarins and depletion of heat shock protein 90-dependent signaling proteins. J Natl Cancer Inst 92:242–248PubMedCrossRefPubMedCentralGoogle Scholar
  117. Massey AJ, Williamson DS, Browne H, Murray JB, Dokurno P, Shaw T et al (2010) A novel, small molecule inhibitor of Hsc70/Hsp70 potentiates Hsp90 inhibitor induced apoptosis in HCT116 colon carcinoma cells. Cancer Chemother Pharmacol 66:535–545PubMedCrossRefPubMedCentralGoogle Scholar
  118. Mayer MP, Prodromou C, Frydman J (2009) The Hsp90 mosaic: a picture emerges. Nat Struct Mol Biol 16:2–6PubMedPubMedCentralCrossRefGoogle Scholar
  119. Mayor-López L, Tristante E, Carballo-Santana M, Carrasco-García E, Grasso S, García-Morales P et al (2014) Comparative study of 17-AAG and NVP-AUY922 in pancreatic and colorectal cancer cells: are there common determinants of sensitivity? Transl Oncol Elsevier 7:590–604CrossRefGoogle Scholar
  120. Mazzaferro V, Coppa J, Carrabba MG, Rivoltini L, Schiavo M, Regalia E et al (2003) Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 9:3235–3245PubMedPubMedCentralGoogle Scholar
  121. McCollum AK, TenEyck CJ, Stensgard B, Morlan BW, Ballman KV, Jenkins RB, Toft DO, Erlichman C (2008) P-glycoprotein-mediated resistance to Hsp90-directed therapy is eclipsed by the heat shock response. Cancer Res 68:7419–7427PubMedPubMedCentralCrossRefGoogle Scholar
  122. McConkey DJ, Zhu K (2008) Mechanisms of proteasome inhibitor action and resistance in cancer. Drug Resist Updat 11:164–179PubMedCrossRefPubMedCentralGoogle Scholar
  123. Modi S, Stopeck AT, Gordon MS, Mendelson D, Solit DB, Bagatell R et al (2007) Combination of trastuzumab and tanespimycin (17-AAG, KOS-953) is safe and active in trastuzumab-refractory HER-2 overexpressing breast cancer: a phase I dose-escalation study. J Clin Oncol Am Soc Clin Oncol 25:5410–5417CrossRefGoogle Scholar
  124. Modi S, Stopeck A, Linden H, Solit D, Chandarlapaty S, Rosen N, D’Andrea G, Dickler M, Moynahan ME, Sugarman S, Ma W, Patil S, Norton L, Hannah AL, Hudis C (2011) HSP90 inhibition is effective in breast cancer: a phase II trial of tanespimycin (17-AAG) plus trastuzumab in patients with HER2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res 17(15):5132–5139PubMedCrossRefPubMedCentralGoogle Scholar
  125. Modi S, Saura C, Henderson C, Lin NU, Mahtani R, Goddard J, Rodenas E, Hudis C, O’Shaughnessy J, Baselga J (2013) A multicenter trial evaluating retaspimycin HCL(IPI-504) plus trastuzumab in patients with advanced or metastatic HER2-positive breast cancer. Breast Cancer Res Treat 139(1):107–113PubMedPubMedCentralCrossRefGoogle Scholar
  126. Multhoff G, Botzler C, Wiesnet M, Muller E, Meier T, Wilmanns W et al (1995) A stress-inducible 72-kDa heat-shock protein (HSP72) is expressed on the surface of human tumor cells, but not on normal cells. Int J Cancer 61:272–279PubMedCrossRefPubMedCentralGoogle Scholar
  127. Multhoff G, Botzler C, Jennen L, Schmidt J, Ellwart J, Issels R (1997a) Heat shock protein 72 on tumor cells: a recognition structure for natural killer cells. J Immunol 158:4341–4350PubMedPubMedCentralGoogle Scholar
  128. Multhoff G, Mizzen L, Winchester CC, Milner CM, Wenk S, Eissner G et al (1997b) Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol 27:1627–1636CrossRefGoogle Scholar
  129. Multhoff G, Mizzen L, Winchester CC, Milner CM, Wenk S, Eissner G, Kampinga HH, Laumbacher B, Johnson J (1999) Heat shock protein 70 (Hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp Hematol. 27(11):1627–1636 PubMed PMID: 10560910PubMedCrossRefGoogle Scholar
  130. Multhoff G, Pfister K, Gehrmann M, Hantschel M, Gross C, Hafner M et al (2001) A 14-mer Hsp70 peptide stimulates natural killer (NK) cell activity. Cell Stress Chaperones 6:337–344PubMedPubMedCentralCrossRefGoogle Scholar
  131. Murakami N, Kuhnel A, Schmid TE, Ilicic K, Stangl S, Braun IS et al (2015) Role of membrane Hsp70 in radiation sensitivity of tumor cells. Radiat Oncol 10:149PubMedPubMedCentralCrossRefGoogle Scholar
  132. Murshid A, Theriault J, Gong J, Calderwood SK (2011) Investigating receptors for extracellular heat shock proteins. Methods Mol Biol 787:289–302PubMedPubMedCentralCrossRefGoogle Scholar
  133. Murshid A, Gong J, Calderwood SK (2012) The role of heat shock proteins in antigen cross presentation. Front Immunol 3:63PubMedPubMedCentralCrossRefGoogle Scholar
  134. Murshid A, Borges TJ, Calderwood SK (2015) Emerging roles for scavenger receptor SREC-I in immunity. Cytokine 75:256–260PubMedPubMedCentralCrossRefGoogle Scholar
  135. Nadeau K, Nadler SG, Saulnier M, Tepper MA, Walsh CT (1994) Quantitation of the interaction of the immunosuppressant deoxyspergualin and analogs with Hsc70 and Hsp90. Biochemistry 33:2561–2567PubMedCrossRefPubMedCentralGoogle Scholar
  136. Neckers L (2002) Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 8:S55–S61PubMedCrossRefGoogle Scholar
  137. Nestle FO, Alijagic S, Gilliet M, Sun Y, Grabbe S, Dummer R et al (1998) Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med 4:328–332PubMedCrossRefPubMedCentralGoogle Scholar
  138. Nishikawa M, Otsuki T, Ota A, Guan X, Takemoto S, Takahashi Y et al (2010) Induction of tumor-specific immune response by gene transfer of Hsp70-cell-penetrating peptide fusion protein to tumors in mice. Mol Ther 18:421–428PubMedCrossRefPubMedCentralGoogle Scholar
  139. Noessner E, Gastpar R, Milani V, Brandl A, Hutzler PJ, Kuppner MC et al (2002) Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J Immunol 169:5424–5432PubMedPubMedCentralCrossRefGoogle Scholar
  140. Oh WK, Galsky MD, Stadler WM, Srinivas S, Chu F, Bubley G, Goddard J, Dunbar J, Ross RW (2011) Multicenter phase II trial of the heat shock protein 90 inhibitor, retaspimycin hydrochloride (IPI-504), in patients with castration-resistant prostate cancer. Urology 78(3):626–630PubMedPubMedCentralCrossRefGoogle Scholar
  141. Okawa Y et al (2009) SNX-2112, a selective Hsp90 inhibitor, potently inhibits tumor cell growth, angiogenesis, and osteoclastogenesis in multiple myeloma and other hematologic tumors by abrogating signaling via Akt and ERK. Blood 113:846–855PubMedPubMedCentralCrossRefGoogle Scholar
  142. Oki Y, Younes A (2004) Heat shock protein-based cancer vaccines. Expert Rev Vaccines 3:403–411PubMedCrossRefPubMedCentralGoogle Scholar
  143. Oki Y, Younes A, Knickerbocker J, Samaniego F, Nastoupil L, Hagemeister F, Romaguera J, Fowler N, Kwak L, Westin J (2015) Experience with HSP90 inhibitor AUY922 in patients with relapsed or refractory non-Hodgkin lymphoma. Haematologica 100(7):e272–e274PubMedPubMedCentralCrossRefGoogle Scholar
  144. Orosz A, Szabo A, Szeman G et al (2006) Novel nontoxic heat shock protein 90 inhibitors having selective antiproliferative effect. Int J Biochem Cell Biol 38:1352–1362PubMedCrossRefPubMedCentralGoogle Scholar
  145. Pacey S, Wilson RH, Walton M, Eatock MM, Hardcastle A, Zetterlund A, Arkenau HT, Moreno-Farre J, Banerji U, Roels B, Peachey H, Aherne W, de Bono JS, Raynaud F, Workman P, Judson I (2011) A phase I study of the heat shock protein 90 inhibitor alvespimycin (17-DMAG) given intravenously to patients with advanced solid tumors. Clin Cancer Res 17(6):1561–1570PubMedPubMedCentralCrossRefGoogle Scholar
  146. Pacey S, Gore M, Chao D, Banerji U, Larkin J, Sarker S, Owen K, Asad Y, Raynaud F, Walton M, Judson I, Workman P, Eisen T (2012) A phase II trial of 17-allylamino, 17-demethoxygeldanamycin (17-AAG, tanespimycin) in patients with metastatic melanoma. Investig New Drugs 30(1):341–349CrossRefGoogle Scholar
  147. Park HS, Lee JS, Huh SH, Seo JS, Choi EJ (2001) Hsp72 functions as a natural inhibitory protein of c-Jun N-terminal kinase. EMBO J 20:446–456PubMedPubMedCentralCrossRefGoogle Scholar
  148. Park HS, Cho SG, Kim CK, Hwang HS, Noh KT, Kim MS et al (2002) Heat shock protein hsp72 is a negative regulator of apoptosis signal-regulating kinase 1. Mol Cell Biol 22:7721–7730PubMedPubMedCentralCrossRefGoogle Scholar
  149. Park SH, Kim WJ, Li H, Seo W, Park SH, Kim H et al (2017) Anti-leukemia activity of a Hsp70 inhibitor and its hybrid molecules. Sci Rep 7(1):3537PubMedPubMedCentralCrossRefGoogle Scholar
  150. Pearl LH (2005) Hsp90 and Cdc37–a chaperone cancer conspiracy. Curr Opin Genet Dev 15:55–61CrossRefPubMedPubMedCentralGoogle Scholar
  151. Pearl LH, Prodromou C, Workman P (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem J 410:439–453PubMedCrossRefPubMedCentralGoogle Scholar
  152. Pedersen KS, Kim GP, Foster NR, Wang-Gillam A, Erlichman C, McWilliams RR (2015) Phase II trial of gemcitabine and tanespimycin (17AAG) in metastatic pancreatic cancer: a Mayo Clinic Phase II Consortium study. Investig New Drugs 33(4):963–968CrossRefGoogle Scholar
  153. Pegram HJ, Andrews DM, Smyth MJ, Darcy PK, Kershaw MH (2011) Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol 89:216–224PubMedCrossRefGoogle Scholar
  154. Peng P, Menoret A, Srivastava PK (1997) Purification of immunogenic heat shock protein 70-peptide complexes by ADP-affinity chromatography. J Immunol Methods 204:13–21PubMedCrossRefGoogle Scholar
  155. Peng C, Brain J, Hu Y et al (2007) Inhibition of heat shock protein 90 prolongs survival of mice with BCR-ABL-T315I-induced leukemia and suppresses leukemic stem cells. Blood 110:678–685PubMedPubMedCentralCrossRefGoogle Scholar
  156. Picard D (2002) Heat-shock protein 90, a chaperone for folding and regulation. Cell Mol Life Sci 59:1640–1648PubMedCrossRefGoogle Scholar
  157. Pilla L, Patuzzo R, Rivoltini L, Maio M, Pennacchioli E, Lamaj E et al (2006) A phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon-alpha in metastatic melanoma patients. Cancer Immunol Immunother 55:958–968PubMedCrossRefGoogle Scholar
  158. Powers MV, Clarke PA, Workman P (2008) Dual targeting of HSC70 and HSP72 inhibits HSP90 function and induces tumor-specific apoptosis. Cancer Cell 14:250–262PubMedCrossRefGoogle Scholar
  159. Powers MV, Jones K, Barillari C, Westwood I, van Montfort RL, Workman P (2010) Targeting HSP70: the second potentially druggable heat shock protein and molecular chaperone? Cell Cycle 9:1542–1550PubMedCrossRefGoogle Scholar
  160. Pratt WB (1998) The hsp90-based chaperone system: involvement in signal transduction from a variety of hormone and growth factor receptors. Proc Soc Exp Biol Med 217:420–434PubMedCrossRefGoogle Scholar
  161. Pratt WB, Morishima Y, Murphy M, Harrell M (2006) Chaperoning of glucocorticoid receptors. Handb Exp Pharmacol:111–138Google Scholar
  162. Propper DJ, Braybrooke JP, Taylor DJ, Lodi R, Styles P, Cramer JA et al (1999) Phase I trial of the selective mitochondrial toxin MKT077 in chemo-resistant solid tumours. Ann Oncol 10:923–927PubMedCrossRefGoogle Scholar
  163. Radons J (2016) The human HSP70 family of chaperones: where do we stand? Cell Stress Chaperones 21(3):379–404PubMedPubMedCentralCrossRefGoogle Scholar
  164. Rafiee M, Kanwar JR, Berg RW, Lehnert K, Lisowska K, Krissansen GW (2001) Induction of systemic anti-tumor immunity by gene transfer of mammalian heat shock protein 70.1 into tumors in situ. Cancer Gene Ther 8:974–981PubMedCrossRefPubMedCentralGoogle Scholar
  165. Ramalingam SS, Egorin MJ, Ramanathan RK, Remick SC, Sikorski RP, Lagattuta TF, Chatta GS, Friedland DM, Stoller RG, Potter DM, Ivy SP, Belani CP (2008) A phase I study of 17-allylamino-17-demethoxygeldanamycin combined with paclitaxel in patients with advanced solid malignancies. Clin Cancer Res 14(11):3456–3461PubMedCrossRefPubMedCentralGoogle Scholar
  166. Ramalingam S, Goss G, Rosell R, Schmid-Bindert G, Zaric B, Andric Z, Bondarenko I, Komov D, Ceric T, Khuri F et al (2015) A randomized phase II study of ganetespib, a heat shock protein 90 inhibitor, in combination with docetaxel in second-line therapy of advanced non-small cell lung cancer (GALAXY-1). Ann Oncol 26:1741–1748PubMedCrossRefPubMedCentralGoogle Scholar
  167. Rao R, Fiskus W, Yang Y, Lee P, Joshi R, Fernandez P, Mandawat A, Atadja P, Bradner JE, Bhalla K (2008) HDAC6 inhibition enhances 17-AAG–mediated abrogation of hsp90 chaperone function in human leukemia cells. Blood 112:1886–1893PubMedCrossRefPubMedCentralGoogle Scholar
  168. Reddy N, Voorhees PM, Houk BE, Brega N, Hinson JM Jr, Jillela A (2013) Phase I trial of the HSP90 inhibitor PF-04929113 (SNX5422) in adult patients with recurrent, refractory hematologic malignancies. Clin Lymphoma Myeloma Leuk 13(4):385–391PubMedCrossRefGoogle Scholar
  169. Renouf DJ, Hedley D, Krzyzanowska MK, Schmuck M, Wang L, Moore MJ (2016) A phase II study of the HSP90 inhibitor AUY922 in chemotherapy refractory advanced pancreatic cancer. Cancer Chemother Pharmacol 78(3):541–545PubMedCrossRefPubMedCentralGoogle Scholar
  170. Rerole AL, Gobbo J, De Thonel A, Schmitt E, Pais de Barros JP, Hammann A et al (2011) Peptides and aptamers targeting HSP70: a novel approach for anticancer chemotherapy. Cancer Res 71:484–495PubMedCrossRefGoogle Scholar
  171. Riabowol KT, Mizzen LA, Welch WJ (1988) Heat shock is lethal to fibroblasts microinjected with antibodies against hsp70. Science 242:433–436PubMedCrossRefGoogle Scholar
  172. Richardson PG, Badros AZ, Jagannath S, Tarantolo S, Wolf JL, Albitar M, Berman D, Messina M, Anderson KC (2010) Tanespimycin with bortezomib: activity in relapsed/refractory patients with multiple myeloma. Br J Haematol 150(4):428–437PubMedPubMedCentralGoogle Scholar
  173. Richter K, Buchner J (2001) Hsp90: chaperoning signal transduction. J Cell Physiol 188:281–290PubMedCrossRefGoogle Scholar
  174. Roe SM, Prodromou C, O’Brien R, Ladbury JE, Piper PW, Pearl LH (1999) Structural basis for inhibition of the Hsp90 molecular chaperone by the anti-tumor antibiotics radicicol and geldanamycin. J Med Chem 42:260–266PubMedCrossRefGoogle Scholar
  175. Ronnen EA, Kondagunta GV, Ishill N, Sweeney SM, Deluca JK, Schwartz L, Bacik J, Motzer RJ (2006) A phase II trial of 17-(allylamino)-17-demethoxygeldanamycin in patients with papillary and clear cell renal cell carcinoma. Investig New Drugs 24:543–546CrossRefGoogle Scholar
  176. Saif MW, Erlichman C, Dragovich T, Mendelson D, Toft D, Burrows F, Storgard C, Von Hoff D (2013) Open-label, dose-escalation, safety, pharmacokinetic, and pharmacodynamic study of intravenously administered CNF1010(17-(allylamino)-17-demethoxygeldanamycin [17-AAG]) in patients with solid tumors. Cancer Chemother Pharmacol 71(5):1345–1355PubMedCrossRefGoogle Scholar
  177. Samuel TA et al (2010) AUY922, a novel HSP90 inhibitor: final results of a first-in-human study in patients with advanced solid malignancies. J Clin Oncol 28(Suppl):2528CrossRefGoogle Scholar
  178. Schadendorf D, Ugurel S, Schuler-Thurner B, Nestle FO, Enk A, Brocker EB et al (2006) Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol 17:563–570PubMedCrossRefGoogle Scholar
  179. Schaefer S, Svenstrup TH, Guerra B (2017) The small-molecule kinase inhibitor D11 counteracts 17-AAG-mediated up-regulation of HSP70 in brain cancer cells. PLoS One 12(5):e0177706PubMedPubMedCentralCrossRefGoogle Scholar
  180. Schildkopf P, Frey B, Ott OJ, Rubner Y, Multhoff G, Sauer R et al (2011) Radiation combined with hyperthermia induces Hsp70-dependent maturation of dendritic cells and release of pro-inflammatory cytokines by dendritic cells and macrophages. Radiother Oncol 101:109–115PubMedCrossRefGoogle Scholar
  181. Schmitt E, Maingret L, Puig PE, Rerole AL, Ghiringhelli F, Hammann A et al (2006) Heat shock protein 70 neutralization exerts potent anti-tumor effects in animal models of colon cancer and melanoma. Cancer Res 66:4191–4197PubMedCrossRefGoogle Scholar
  182. Schroder CP et al (2011) Use of biomarkers and imaging to evaluate the treatment effect of AUY922, an HSP90 inhibitor, in patients with HER2+ or ER+ metastatic breast cancer. J Clin Oncol 29(Suppl):e11024CrossRefGoogle Scholar
  183. Schulte TW, Akinaga S, Soga S, Sullivan W, Stensgard B, Toft D, Neckers LM (1998) Antibiotic radicicol binds to the N-terminal domain of Hsp90 and shares important biological activities with geldanamycin. Cell Stress Chaperones 3:100–108PubMedPubMedCentralCrossRefGoogle Scholar
  184. Scroggins BT, Robzyk K, Wang D, Marcu MG, Tsutsumi S, Beebe K, Cotter RJ, Felts S, Toft D, Karnitz L et al (2007) An acetylation site in the middle domain of Hsp90 regulates chaperone function. Mol Cell 25:151–159PubMedPubMedCentralCrossRefGoogle Scholar
  185. Seggewiss-Bernhardt R, Bargou RC, Goh YT, Stewart AK, Spencer A, Alegre A, Bladé J, Ottmann OG, Fernandez-Ibarra C, Lu H, Pain S, Akimov M, Iyer SP (2015) Phase 1/1B trial of the heat shock protein 90 inhibitor NVP-AUY922 as monotherapy or in combination with bortezomib in patients with relapsed or refractory multiple myeloma. Cancer 121(13):2185–2192PubMedCrossRefGoogle Scholar
  186. SenGupta D, Norris PJ, Suscovich TJ, Hassan-Zahraee M, Moffett HF, Trocha A et al (2004) Heat shock protein-mediated cross-presentation of exogenous HIV antigen on HLA class I and class II. J Immunol 173:1987–1993PubMedCrossRefGoogle Scholar
  187. Sessa C et al (2013) First-in-human phase I dose-escalation study of the HSP90 inhibitor AUY922 in patients with advanced solid tumors. Clin Cancer Res 19:3671–3680PubMedCrossRefGoogle Scholar
  188. Sharp SY et al (2007a) In vitro biological characterization of a novel, synthetic diaryl pyrazole resorcinol class of heat shock protein 90 inhibitors. Cancer Res 67:2206–2216PubMedCrossRefGoogle Scholar
  189. Sharp SY et al (2007b) Inhibition of the heat shock protein 90 molecular chaperone in vitro and in vivo by novel, synthetic, potent resorcinylic pyrazole/isoxazole amide analogues. Mol Cancer Ther 6:1198–1211PubMedCrossRefGoogle Scholar
  190. Shevtsov MA, Kim AV, Samochernych KA, Romanova IV, Margulis BA, Guzhova IV et al (2014a) Pilot study of intra-tumoral injection of recombinant heat shock protein 70 in the treatment of malignant brain tumors in children. Onco Targets Ther 7:1071–1081PubMedPubMedCentralCrossRefGoogle Scholar
  191. Shevtsov MA, Komarova EY, Meshalkina DA, Bychkova NV, Aksenov ND, Abkin SV et al (2014b) Exogenously delivered heat shock protein 70 displaces its endogenous analogue and sensitizes cancer cells to lymphocytes-mediated cytotoxicity. Oncotarget 5:3101–3114PubMedPubMedCentralCrossRefGoogle Scholar
  192. Shevtsov MA, Pozdnyakov AV, Mikhrina AL, Yakovleva LY, Nikolaev BP, Dobrodumov AV et al (2014c) Effective immunotherapy of rat glioblastoma with prolonged intra-tumoral delivery of exogenous heat shock protein Hsp70. Int J Cancer 135:2118–2128PubMedCrossRefGoogle Scholar
  193. Shevtsov MA, Nikolaev BP, Yakovleva LY, Parr MA, Marchenko YY, Eliseev I et al (2015) 70-kDa heat shock protein coated magnetic nanocarriers as a nanovaccine for induction of anti-tumor immune response in experimental glioma. J Control Release 220:329–340PubMedCrossRefGoogle Scholar
  194. Shin BK, Wang H, Yim AM, Le Naour F, Brichory F, Jang JH et al (2003) Global profiling of the cell surface proteome of cancer cells uncovers an abundance of proteins with chaperone function. J Biol Chem 278:7607–7616PubMedCrossRefGoogle Scholar
  195. Siegel D, Jagannath S, Vesole DH, Borello I, Mazumder A, Mitsiades C, Goddard J, Dunbar J, Normant E, Adams J, Grayzel D, Anderson KC, Richardson P (2011) A phase 1 study of IPI-504 (retaspimycin hydrochloride) in patients with relapsed or relapsed and refractory multiple myeloma. Leuk Lymphoma 52(12):2308–2315PubMedCrossRefGoogle Scholar
  196. Smith JR, Clarke PA, de Billy E, Workman P (2008) Silencing the cochaperone CDC37 destabilizes kinase clients and sensitizes cancer cells to HSP90 inhibitors. Oncogene. PubMedPubMedCentralCrossRefGoogle Scholar
  197. Soga S, Shiotsu Y, Akinaga S, Sharma SV (2003) Development of radicicol analogues. Curr Cancer Drug Targets 3:359–369PubMedCrossRefGoogle Scholar
  198. Soldano KL, Jivan A, Nicchitta CV, Gewirth DT (2003) Structure of the N-terminal domain of GRP94. Basis for ligand specificity and regulation. J Biol Chem 278:48330–48338PubMedCrossRefGoogle Scholar
  199. Solit DB, Osman I, Polsky D, Panageas KS, Daud A, Goydos JS, Teitcher J, Wolchok JD, Germino FJ, Krown SE, Coit D, Rosen N, Chapman PB (2008a) Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clin Cancer Res 14(24):8302–8307PubMedPubMedCentralCrossRefGoogle Scholar
  200. Solit DB, Osman I, Polsky D, Panageas KS, Daud A, Goydos JS, Teitcher J, Wolchok JD, Germino FJ, Krown SE (2008b) Phase II trial of 17-allylamino-17-demethoxygeldanamycin in patients with metastatic melanoma. Clin Cancer Res 14:8302–8307PubMedPubMedCentralCrossRefGoogle Scholar
  201. Specht HM, Ahrens N, Blankenstein C, Duell T, Fietkau R, Gaipl US et al (2015) Heat shock protein 70 (Hsp70) peptide activated natural killer (NK) cells for the treatment of patients with non-small cell lung cancer (NSCLC) after radiochemotherapy (RCTx) – from preclinical studies to a clinical phase II trial. Front Immunol 6:162PubMedPubMedCentralCrossRefGoogle Scholar
  202. Sreedhar AS, Soti C, Csermely P (2004) Inhibition of Hsp90: a new strategy for inhibiting protein kinases. Biochim Biophys Acta 1697:233–242PubMedCrossRefGoogle Scholar
  203. Srivastava PK (1994) Heat shock proteins in immune response to cancer: the fourth paradigm. Experientia 50:1054–1060PubMedCrossRefGoogle Scholar
  204. Srivastava PK (1997) Purification of heat shock protein-peptide complexes for use in vaccination against cancers and intracellular pathogens. Methods 12:165–171PubMedCrossRefGoogle Scholar
  205. Srivastava P (2002a) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425CrossRefGoogle Scholar
  206. Srivastava PK (2002b) Roles of heat-shock proteins in innate and adaptive immunity. Nat Rev Immunol 2:185–194CrossRefPubMedPubMedCentralGoogle Scholar
  207. Srivastava PK (2006) Therapeutic cancer vaccines. Curr Opin Immunol 18:201–205PubMedCrossRefGoogle Scholar
  208. Srivastava IK, Liu MA (2003) Gene vaccines. Ann Intern Med 138:550–559PubMedCrossRefGoogle Scholar
  209. Srivastava PK, DeLeo AB, Old LJ (1986) Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci U S A 83:3407–3411PubMedPubMedCentralCrossRefGoogle Scholar
  210. Stangl S, Gehrmann M, Riegger J, Kuhs K, Riederer I, Sievert W et al (2011) Targeting membrane heat-shock protein 70 (Hsp70) on tumors by cmHsp70.1 antibody. Proc Natl Acad Sci U S A 108:733–738CrossRefGoogle Scholar
  211. Sullivan LC, Clements CS, Beddoe T, Johnson D, Hoare HL, Lin J et al (2007) The heterodimeric assembly of the CD94-NKG2 receptor family and implications for human leukocyte antigen-E recognition. Immunity 27:900–911PubMedCrossRefGoogle Scholar
  212. Supko JG, Hickman RL, Grever MR, Malspeis L (1995) Preclinical pharmacologic evaluation of geldanamycin as an anti-tumor agent. Cancer Chemother Pharmacol 36:305–315PubMedCrossRefGoogle Scholar
  213. Suto R, Srivastava PK (1995) A mechanism for the specific immunogenicity of heat shock protein-chaperoned peptides. Science 269:1585–1588PubMedCrossRefGoogle Scholar
  214. Takai H, Xie Y, de Lange T, Pavletich NP (2010) Tel2 structure and function in the Hsp90-dependent maturation of mTOR and ATR complexes. Genes Dev 24:2019–2030PubMedPubMedCentralCrossRefGoogle Scholar
  215. Takemoto S, Nishikawa M, Guan X, Ohno Y, Yata T, Takakura Y (2010) Enhanced generation of cytotoxic T lymphocytes by heat shock protein 70 fusion proteins harboring both CD8(+) T cell and CD4(+) T cell epitopes. Mol Pharm 7:1715–1723PubMedCrossRefGoogle Scholar
  216. Taldone T, Gozman A, Maharaj R, Chiosis G (2008) Targeting Hsp90: small-molecule inhibitors and their clinical development. Curr Opin Pharmacol 8:370–374PubMedPubMedCentralCrossRefGoogle Scholar
  217. Tatokoro M, Koga F, Yoshida S, Kihara K (2015) Heat shock protein 90 targeting therapy: state of the art and future perspective. EXCLI J 14:48–58PubMedPubMedCentralGoogle Scholar
  218. Testori A, Richards J, Whitman E, Mann GB, Lutzky J, Camacho L et al (2008) Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician’s choice of treatment for stage IV melanoma: the C-100-21 Study Group. J Clin Oncol 26:955–962PubMedCrossRefGoogle Scholar
  219. Tosti G, Cocorocchio E, Pennacchioli E, Ferrucci PF, Testori A, Martinoli C (2014) Heat-shock proteins-based immunotherapy for advanced melanoma in the era of target therapies and immunomodulating agents. Expert Opin Biol Ther 14:955–967PubMedCrossRefGoogle Scholar
  220. Tse AN, Klimstra DS, Gonen M, Shah M, Sheikh T, Sikorski R, Carvajal R, Mui J, Tipian C, O’Reilly E, Chung K, Maki R, Lefkowitz R, Brown K, Manova-Todorova K, Wu N, Egorin MJ, Kelsen D, Schwartz GK (2008) A phase 1 dose-escalation study of irinotecan in combination with 17-allylamino-17-demethoxygeldanamycin in patients with solid tumors. Clin Cancer Res 14(20):6704–6711PubMedPubMedCentralCrossRefGoogle Scholar
  221. Udono H, Srivastava PK (1993) Heat shock protein 70-associated peptides elicit specific cancer immunity. J Exp Med 178:1391–1396PubMedCrossRefGoogle Scholar
  222. Udono H, Levey DL, Srivastava PK (1994) Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc Natl Acad Sci U S A 91:3077–3081PubMedPubMedCentralCrossRefGoogle Scholar
  223. Ullrich SJ, Robinson EA, Law LW, Willingham M, Appella E (1986) A mouse tumor-specific transplantation antigen is a heat shock-related protein. Proc Natl Acad Sci U S A 83:3121–3125PubMedPubMedCentralCrossRefGoogle Scholar
  224. Vabulas RM, Ahmad-Nejad P, Ghose S, Kirschning CJ, Issels RD, Wagner H (2002) HSP70 as endogenous stimulus of the toll/interleukin-1 receptor signal pathway. J Biol Chem 277:15107–15112CrossRefPubMedPubMedCentralGoogle Scholar
  225. Vaughan CK, Gohlke U, Sobott F et al (2006) Structure of an Hsp90-Cdc37-Cdk4 complex. Mol Cell 23:697–707PubMedPubMedCentralCrossRefGoogle Scholar
  226. Vicencio JM, Yellon DM, Sivaraman V, Das D, Boi-Doku C, Arjun S et al (2015) Plasma exosomes protect the myocardium from ischemia-reperfusion injury. J Am Coll Cardiol 65:1525–1536PubMedCrossRefGoogle Scholar
  227. Vogel M, Bukau B, Mayer MP (2006) Allosteric regulation of Hsp70 chaperones by a proline switch. Mol Cell 21:359–367PubMedCrossRefGoogle Scholar
  228. Wagner AJ, Chugh R, Rosen LS, Morgan JA, George S, Gordon M, Dunbar J, Normant E, Grayzel D, Demetri GD (2013) A phase I study of the HSP90 inhibitor retaspimycin hydrochloride (IPI-504) in patients with gastrointestinal stromal tumors or soft-tissue sarcomas. Clin Cancer Res 19(21):6020–6029PubMedPubMedCentralCrossRefGoogle Scholar
  229. Walker AR, Klisovic R, Johnston JS, Jiang Y, Geyer S, Kefauver C, Binkley P, Byrd JC, Grever MR, Garzon R, Phelps MA, Marcucci G, Blum KA, Blum W (2013) Pharmacokinetics and dose escalation of the heat shock protein inhibitor 17-allyamino-17-demethoxygeldanamycin in combination with bortezomib in relapsed or refractory acute myeloid leukemia. Leuk Lymphoma 54(9):1996–2002PubMedCrossRefGoogle Scholar
  230. Weigel BJ, Blaney SM, Reid JM, Safgren SL, Bagatell R, Kersey J, Neglia JP, Ivy SP, Ingle AM, Whitesell L, Gilbertson RJ, Krailo M, Ames M, Adamson PC (2007) A phase I study of 17-allylaminogeldanamycin in relapsed/refractory pediatric patients with solid tumors: a Children’s Oncology Group study. Clin Cancer Res 13(6):1789–1793PubMedCrossRefPubMedCentralGoogle Scholar
  231. Whetstone H, Lingwood C (2003) 3′Sulfogalactolipid binding specifically inhibits Hsp70 ATPase activity in vitro. Biochemistry 42(6):1611–1617PubMedCrossRefPubMedCentralGoogle Scholar
  232. Whitesell L, Lindquist SL (2005) HSP90 and the chaperoning of cancer. Nat Rev Cancer 5:761–772PubMedCrossRefPubMedCentralGoogle Scholar
  233. Whitesell L, Bagatell R, Falsey R (2003) The stress response: implications for the clinical development of hsp90 inhibitors. Curr Cancer Drug Targets 3:349–358PubMedCrossRefPubMedCentralGoogle Scholar
  234. Whitesell L, Santagata S, Lin NU (2012) Inhibiting HSP90 to treat cancer: a strategy in evolution. Curr Mol Med 12:1108–1124PubMedCrossRefPubMedCentralGoogle Scholar
  235. Williams DR, Ko SK, Park S, Lee MR, Shin I (2008) An apoptosis-inducing small molecule that binds to heat shock protein 70. Angew Chem Int Ed Eng 47:7466–7469CrossRefGoogle Scholar
  236. Wisen S, Bertelsen EB, Thompson AD, Patury S, Ung P, Chang L et al (2010) Binding of a small molecule at a protein–protein interface regulates the chaperone activity of hsp70–hsp40. ACS Chem Biol 5:611–622PubMedPubMedCentralCrossRefGoogle Scholar
  237. Wood C (2008) A vaccine for renal cancer. Lancet 372:1460–1461PubMedCrossRefPubMedCentralGoogle Scholar
  238. Wright CM, Seguin SP, Fewell SW, Zhang H, Ishwad C, Vats A et al (2009) Inhibition of simian virus 40 replication by targeting the molecular chaperone function and ATPase activity of T antigen. Virus Res 141(1):71–80PubMedPubMedCentralCrossRefGoogle Scholar
  239. Xia Y, Liu Y, Rocchi P, Wang M, Fan Y, Qu F, Iovanna JL, Peng L (2012) Targeting heat shock factor 1 with a triazole nucleoside analog to elicit potent anticancer activity on drug-resistant pancreatic cancer. Cancer Lett 318:145–153PubMedCrossRefPubMedCentralGoogle Scholar
  240. Yamamoto K, Garbaccio RM, Stachel SJ et al (2003) Total synthesis as a resource in the discovery of potentially valuable anti-tumor agents: cycloproparadicicol. Angew Chem Int Ed Eng 42:1280–1284CrossRefGoogle Scholar
  241. Yang Y, Liu B, Dai J, Srivastava PK, Zammit DJ, Lefrancois L et al (2007) Heat shock protein gp96 is a master chaperone for toll-like receptors and is important in the innate function of macrophages. Immunity 26:215–226PubMedPubMedCentralCrossRefGoogle Scholar
  242. Yi F, Regan L (2008) A novel class of small molecule inhibitors of Hsp90. ACS Chem Biol 3:645–654PubMedPubMedCentralCrossRefGoogle Scholar
  243. Yin Z, Henry EC, Gasiewicz TA (2009) (−)-Epigallocatechin-3-gallate is a novel Hsp90 inhibitor. Biochemistry 48:336–345PubMedPubMedCentralCrossRefGoogle Scholar
  244. Yokota S, Kitahara M, Nagata K (2000) Benzylidene lactam compound, KNK437, a novel inhibitor of acquisition of thermotolerance and heat shock protein induction in human colon carcinoma cells. Cancer Res 60:2942–2948PubMedPubMedCentralGoogle Scholar
  245. Yu S, Cai X, Wu C, Liu Y, Zhang J, Gong X, Wang X, Wu X, Zhu T, Mo L, Gu J, Yu Z, Chen J, Thiery JP, Chai R, Chen L (2017) Targeting HSP90-HDAC6 regulating network implicates precision treatment of breast cancer. Int J Biol Sci 13(4):505–517PubMedPubMedCentralCrossRefGoogle Scholar
  246. Zhang H, Burrows F (2004) Targeting multiple signal transduction pathways through inhibition of Hsp90. J Mol Med 82:488–499PubMedPubMedCentralGoogle Scholar
  247. Zhang C, Wang X, Liu H, Zhang M, Geng M, Sun L, Shen A, Zhang A (2017) Design, synthesis and pharmacological evaluation of 4,5-diarylisoxazols bearing amino acid residues within the 3-amido motif as potent heat shock protein 90 (Hsp90) inhibitors. Eur J Med Chem 125:315–326PubMedCrossRefPubMedCentralGoogle Scholar
  248. Zoubeidi A, Gleave M (2012) Small heat shock proteins in cancer therapy and prognosis. Int J Biochem Cell Biol 44(10):1646–1656PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Center for Translational Cancer Research (TranslaTUM), Radiation Immuno Oncology GroupTechnische Universität München (TUM)MunichGermany
  2. 2.Institute of Cytology of the Russian Academy of Sciences (RAS)St. PetersburgRussia
  3. 3.Pavlov First Saint Petersburg State Medical UniversitySt. PetersburgRussia
  4. 4.Polenov Russian Scientific Research Institute of NeurosurgerySt. PetersburgRussia

Personalised recommendations