Advertisement

Examples of Computer Vision Systems Applications Based on Neural Networks

  • Tetyana Baydyk
  • Ernst Kussul
  • Donald C. Wunsch II
Chapter
Part of the Computational Intelligence Methods and Applications book series (CIMA)

Abstract

Face recognition is an important security task. We propose a high-level method to solve this problem: a permutation coding neural classifier (PCNC). A PCNC with a special feature extractor for face image recognition systems is a relatively new method that has been tested with good results to classify real environment images (such as larvae of various types and hand-made elements). As baseline methods, a support vector machine (SVM) and the iterative closest point (ICP) method are selected for comparison. We applied these methods to gray-level images from the FRAV3D, FEI and LWF (Labeled Faces in the Wild) face databases. We aggregated various distortions for the initial images to improve the PCNC. We analyze and discuss the obtained results. For LWF database we have investigated experimentally three different cases. In the first, the recognition process was based on images of the whole faces. In the second case, the recognition process was based on fragment (eye-eyebrow) images. In the third case, the recognition process was based on fragment (mouth-chin) images. The results are presented. We describe recognition system for the Colorado potato beetles based on RSC neural classifier.

References

  1. 1.
    Zhang, H., Zhang, Y., Huang, T.S.: Pose-robust face recognition via sparse representation. Pattern Recognit. 46(5), 1511–1521 (2013)zbMATHGoogle Scholar
  2. 2.
    Arandjelović, O., Cipolla, R.: Achieving robust face recognition from video by combining a weak photometric model and a learnt generic face invariant. Pattern Recognit. 46(1), 9–23 (2013)Google Scholar
  3. 3.
    Baradarani, A., Wu, Q.M.J., Ahmadi, M.: An efficient illumination invariant face recognition framework via illumination enhancement and DD-DT image WT filtering. Pattern Recognit. 46(1), 57–72 (2013)Google Scholar
  4. 4.
    Face Recognition Homepage: June 2013. Source Code. http://www.face-rec.org/source-codes/ (2013)
  5. 5.
    Face Recognition Vendor Test: June 2013. FRVT. http://www.nist.gov/itl/iad/ig/frvt-home.cfm (2013)
  6. 6.
    Labeled Faces in the Wild, LFW: June 2013. http://vis-www.cs.umass.edu/lfw/results.html (2013)
  7. 7.
    Geiger, H.: Facial Recognition and Privacy, Center for Democracy & Technology. http://www.cdt.org/blogs/harley-geiger/612facial-recognition-and-privacy (2012)
  8. 8.
    Ren, J., Jiang, X., Yuan, J.: A complete and fully automated face verification system on mobile devices. Pattern Recognit. 46(1), 45–56 (2013)Google Scholar
  9. 9.
    Cao, Z., Yin, Q., Tang, X., Sun, J.: Face recognition with learning-based descriptor. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, CA, pp. 2707–2714 (2010)Google Scholar
  10. 10.
    Wiskott, L., Fellous, J.M., Kuiger, N., Von Der Malsburg, C.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 775–779 (1997)Google Scholar
  11. 11.
    Yang, J., Zhang, D., Frangi, A.F., Yang, J.Y.: Two-dimensional PCA: a new approach to appearance-based face representation and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 131–137 (2004)Google Scholar
  12. 12.
    Ahonen, T., Hadid, A., Pietikainen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)zbMATHGoogle Scholar
  13. 13.
    Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: a literature survey. ACM Comput. Surv. (CSUR). 35(4), 399–458 (2003)Google Scholar
  14. 14.
    Maglianesi, M., Stegmayer, G.: Methodology for the construction of a biometric facial recognition system based on a neural classifier. IEEE Lat Am Trans. 10(5), 2175–2184 (2012)Google Scholar
  15. 15.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)Google Scholar
  16. 16.
    Li, S.Z., Lu, J.: Face recognition using the nearest feature line. IEEE Trans Neural Netw. 10(2), 439–443 (1999)Google Scholar
  17. 17.
    Beymer, D., Poggio, T.: Face recognition from one example view. In: Proceedings of 5th International Conference on Computer Vision, pp. 500–507 (1995)Google Scholar
  18. 18.
    Turk, M., Pentland, A.: Face recognition using eigenfaces. Comput. Vis. Pattern Recognit. 586–591 (1991)Google Scholar
  19. 19.
  20. 20.
    Gross, R., Matthews, I., Baker, S.: Active appearance models with occlusion. Image Vis. Comput. 24(6), 593–604 (2006)Google Scholar
  21. 21.
    Lu, J., Tan, Y.-P., Wang, G.: Discriminative multimanifold analysis for face recognition from a single training sample per person. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 39–51 (2013)Google Scholar
  22. 22.
    Mohammadzade, H., Hatzinakos, D.: Iterative closest normal point for 3D face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 35(2), 381–397 (2013)Google Scholar
  23. 23.
    Yiqun, H., Mian Ajmal, S., Robyn, O.: Face recognition using sparse approximated nearest points between image sets. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 1992–2004 (2012)Google Scholar
  24. 24.
    Soma, B., Bowyer Kevin, W., Flynn Patrick, J.: Multidimensional scaling for matching low-resolution face images. IEEE Trans. Pattern Anal. Mach. Intell. 34(10), 2019–2030 (2012)Google Scholar
  25. 25.
    Wu, Y.-M., Wang, H.-W., Lu, Y.-L., Yen, S., Hsiao, Y.-T.: Facial feature extraction and applications: a review intelligent information and database systems. Lect. Notes Comput. Sci. 7196, 228–238 (2012)Google Scholar
  26. 26.
    Serrano, A., Martín de Diego, I., Conde, C., Cabello, E.: Recent advances in face biometrics with Gabor wavelets: a review. Pattern Recognit. Lett. 31(5), 372–381 (2010)Google Scholar
  27. 27.
    Serrano, Á., Martín de Diego, I., Conde, C., Cabello, E.: Analysis of variance of Gabor filter banks parameters for optimal face recognition. Pattern Recognit. Lett. 32(15), 1998–2008 (2011)Google Scholar
  28. 28.
    Jossy, G.P., Tevaramani, S.S., Raja, K.B.: Performance comparison of face recognition using transform domain techniques. World Comput. Sci. Inf. Technol. J. 2(3), 82–86 (2012)Google Scholar
  29. 29.
    Martín de Diego, I., Serrano, Á., Conde, C., Cabello, E.: Face verification with a kernel fusion method. Pattern Recognit. Lett. 31(9), 837–844 (2010)Google Scholar
  30. 30.
    Dubek-Dyduch, E., Tadeusiewicz, R., Horzyk, A.: Neural network adaptation process effectiveness dependent of constant training data availability. Neurocomputing. 72, 3138–3149 (2009)Google Scholar
  31. 31.
    Horzyk, A.: Self optimizing neural networks SONN-3 for classification tasks. In: Corchado, E., Abraham, A., Pedrycz, W. (eds.) Proceedings of HAIS 2008, LNAI 5271, pp. 229–236. Springer (2008)Google Scholar
  32. 32.
    Brunelli, R., Poggio, T.: Face recognition: features versus templates. IEEE Trans. Pattern Anal. Mach. Intell. 15(10), 1042–1052 (1993)Google Scholar
  33. 33.
    Furht, B. (ed.): Encyclopedia of Multimedia. Springer, Heidelberg (2006)Google Scholar
  34. 34.
    Face Recognition Homepage.: http://www.face-rec.org/databases/ (2012)
  35. 35.
    Hayat, K., Puech, W., Gesquière, G., Subsol, G.: 3D facial visualization through adaptive spread spectrum synchronous scalable (A4S) data hiding. In: Proceedings of International Conference on Image Process, pp. 2473–2477 (2009)Google Scholar
  36. 36.
    Walkden, J., Pears, N.E.: The utility of 3D landmarks for arbitrary pose face recognition. Department of Computer Science, University of York (2010)Google Scholar
  37. 37.
    Baidyk, T., Kussul, E., Makeyev, O., Caballero, A., Ruiz, L., Carrera, G., Velasco, G.: Flat image recognition in the process of microdevice assembly. Pattern Recognit. Lett. 25(1), 107–118 (2004)Google Scholar
  38. 38.
    Kussul, E., Baidyk, T., Wunsch, D., Makeyev, O., Martín, A.: Permutation coding technique for image recognition systems. IEEE Trans. Neural Netw. 17(6), 1566–1579 (2006)Google Scholar
  39. 39.
    Kussul, E., Baidyk, T., Wunsch, D., Makeyev, O., Martin, A.: Image recognition systems based on random local descriptors. In: Proceedings of International Joint Conference on Neural Networks, Vancouver, pp. 4722–4727 (2006)Google Scholar
  40. 40.
    Baidyk, T., Kussul, E., Makeyev, O.: Neurocomputing research trends. In: Kang, G.B. (ed.) General Purpose Image Recognition Systems Based on Neural Classifiers, Ch. 3, pp. 83–114. NOVA, Hauppauge (2008)Google Scholar
  41. 41.
    Kussul, E., Baidyk, T., Wunsch, D.: Neural networks and micro mechanics. Springer, Heidelberg (2010)zbMATHGoogle Scholar
  42. 42.
    Bolle, R.M., Connell, J.H., Pankanti, S., Ratha, N.K., Senior, A.W.: The relation between the ROC curve and the CMC. In: Proceedings of 4th IEEE Workshop on Automatic Identification Advanced Technologies, pp. 15–20 (2005)Google Scholar
  43. 43.
    Conde, C., Serrano, A., Cabello, E.: Multimodal 2D, 2.5D & 3D face verification. In: Proceedings of International Conference on Image Process, pp. 2061–2064 (2006)Google Scholar
  44. 44.
    Conde, C.: Verificación facial multimodal: 2D y 3D. Ph.D. dissertation, Face Recognition and Artificial Vision Group (FRAV), URJC, Madrid (2006)Google Scholar
  45. 45.
    Chetverikov, D., et al.: The trimmed iterative closest point algorithm. In: Proceedings of IEEE 16th International Conference on Pattern Recognition, pp. 545–548 (2002)Google Scholar
  46. 46.
    Cook, J., et al.: Face recognition from 3d data using iterative closest point algorithm and Gaussian mixture models. In: Proceedings of 2nd International Symposium on 3D Data Processing, Visualization and Transmission, 3DPVT, pp. 1–8 (2004)Google Scholar
  47. 47.
    Kussul, E., Baidyk, T., Conde, C., Martín de Diego, I., Cabello, E.: Face recognition improvement with distortions of images in training set. In: Proceedings of IEEE International Conference on Neural Networks, pp. 2769–2774 (2013)Google Scholar
  48. 48.
    Keys, R.G.: Cubic convolution interpolation for digital image processing. IEEE Trans. Acoust. Speech Signal Process. 29(6), 1153–1160 (1981)MathSciNetzbMATHGoogle Scholar
  49. 49.
    Web-4.: http://en.wikipedia.org/wiki/Shear_mapping, consulted 30 Apr 2014
  50. 50.
  51. 51.
    Tan, T., Yan, H.: Object recognition using fractal neighbor distance: eventual convergence and recognition rates. In: Proceedings of the 15th International Conference on Pattern Recognition 2000 (ICPR’00), vol. 2, pp. 781–784 (2000)Google Scholar
  52. 52.
    Er, M.J., Shiqian, W., Juwei, L., Toh, H.L.: Face recognition with radial basis function (RBF) neural networks. IEEE Trans. Neural Netw. 13(3), 697–710 (2002)Google Scholar
  53. 53.
    Haddadnia, J., Ahmadi, M., Faez, K.: An efficient method for recognition of human faces using higher orders pseudo Zernike moment invariant. In: Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition 2002 (FGR’02), pp. 330–335 (2002)Google Scholar
  54. 54.
    Neagoe, V.-E., Ropot, A.-D.: Concurrent self-organizing maps for pattern classification. In: Proceedings of the First IEEE International Conference on Cognitive Informatics 2002 (ICCI’02), pp. 304–312 (2002)Google Scholar
  55. 55.
    Phiasai, T., Arunrungrusmi, S., Chamnongthai, K.: Face recognition system with PCA and moment invariant method. In: The 2001 IEEE International Symposium on Circuits and Systems 2001 (ISCAS’01), vol. 2, pp. 165–168 (2001)Google Scholar
  56. 56.
    Lawrence, S., Lee Giles, C., Chung Tsoi, A., Back, A.D.: Face recognition: a convolutional neural-network approach. IEEE Trans. Neural Netw. 8(1), 98–113 (1997)Google Scholar
  57. 57.
    Guo, G., Li, S.Z., Chan, K.: Face recognition by support vector machines. In: Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition 2000, pp. 196–201 (2000)Google Scholar
  58. 58.
    Lin, S.-H., Kung, S.-Y., Lin, L.-J.: Face recognition/detection by probabilistic decision-based neural network. IEEE Trans. Neural Netw. 8(1), 114–132 (1997)Google Scholar
  59. 59.
    Brennan, V., Principe, J.C.: Face classification using a multiresolution principal component analysis. In: Proceedings of the IEEE Signal Processing Society Workshop (NNSP’98), pp. 506–515 (1998)Google Scholar
  60. 60.
    Eickeler, S., Müller, S., Rigoll, G.: High quality face recognition in JPEG compressed images. In: Proceedings of the 1999 International Conference on Image Processing 1999 (ICIP’99), vol. 1, pp. 672–676 (1999)Google Scholar
  61. 61.
    FEI Face Database.: Image Processing Laboratory, Department of Electrical Engineering, Centro Universitario da FEI, São Bernardo do Campo, São Paulo, Brazil, http://fei.edu.br/~cet/facedatabase.html. Last accessed 21 Nov 2014
  62. 62.
    Thomaz, C.E., Giraldi, G.A.: A new ranking method for principal components analysis and its application to face image analysis. Image Vis. Comput. 28(6), 902–913 (2010)Google Scholar
  63. 63.
    FRAV3D: Universidad Rey Juan Carlos. http://www.frav.es/. Accessed 05 Aug 2012
  64. 64.
    Monterrosas, Z.C., Baidyk, T., Kussul, E., Gallardo, J.I.: Rotation distortions for improvement in face recognition with PCNC. In: Proceedings of the IEEE 3rd International Conference and Workshop on Bioinspired Intelligence (IWOBI’14), Liberia, Costa Rica, pp. 50–55 (2014)Google Scholar
  65. 65.
    Kussul, E., Baidyk, T., Makeyev, O.: Pairwise permutation coding neural classifier. In: Proceedings of the International Joint Conference on Neural Networks 2007 (IJCNN’07), pp. 1847–1852 (2007)Google Scholar
  66. 66.
    Database of Faces (formerly ‘The ORL Database of Faces’): AT&T Laboratories Cambridge. http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
  67. 67.
    Cherifi, D., Radji, N., Nait-Ali, A.: Effect of noise, blur and motion on global appearance face recognition based methods performance. Int. J. Comput. Appl. 16(6), 4–13 (2011)Google Scholar
  68. 68.
    Hashim, A.N., Hussain, Z.M.: Local and semi-global feature-correlative techniques for face recognition. Int. J. Adv. Comput. Sci. Appl. 5(8), 157–167 (2014)Google Scholar
  69. 69.
    El-Sayed, R.S., El-Nahas, M.Y., El Kholy, A.: Sparse representation approach for variation-robust face recognition using discrete wavelet transform. Int. J. Comput. Sci. Issues. 9(6), 275–280 (2012)Google Scholar
  70. 70.
    Mohamed, B., Redwa, T., Mohamed, S.: Face recognition using two-dimensional subspace analysis and PNN. Int. J. Comput. Appl. 72(6), 1–8 (2013)Google Scholar
  71. 71.
    Ullman, S., Sali, E., Vidal-Naquet, M.: A fragment-based approach to object representation and classification. In: Arcelli, C., et al. (eds.) IWVF4, LNCS 2059, pp. 85–100 (2001)Google Scholar
  72. 72.
    Tanaka, J.W., Farah, M.J.: Parts and wholes in face recognition. Q. J. Exp. Psychol. 46A(2), 225–245 (1993)Google Scholar
  73. 73.
    Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification. Wiley, New York (2001)zbMATHGoogle Scholar
  74. 74.
    Huang, G., Ramesh, M., Berg, T.: Labeled Faces in the Wild: A Database for Studying Face Recognition in Unconstrained Environments. University of Massachusetts, Amherst, Technical Report, pp. 07–49 (2007)Google Scholar
  75. 75.
    Gao, W., Cao, B., Shan, S., Chen, X., Zhou, D., Zhang, X., Zhao, D.: The CAS-PEAL large-scale Chinese face database and baseline evaluation. IEEE Trans. Syst. Man Cybern. Part A: Syst. Hum. 38(1), 149–161 (2008)Google Scholar
  76. 76.
    Lei, Z., Pietikäinen, M., Li, S.: Learning discriminant face descriptor. IEEE Trans. Pattern Anal. Mach. Intell. 36(2), 289–302 (2014)Google Scholar
  77. 77.
    Kussul, E., Baydyk, T.: Face Recognition Using Special Neural Networks, IJCNN 2015, Killarney, July 12–17 2015, pp. 1–7 (2015)Google Scholar
  78. 78.
    Baidyk, T., Kussul, E., Cruz Monterrosas, Z., Ibarra Gallardo, A.J., Roldán Serrato, K.L., Conde, C., Serrano, A., Martín de Diego, I., Cabello, E.: Face recognition using a permutation coding neural classifier. Neural Comput. Appl. (2015).  https://doi.org/10.1007/s00521-015-1913-0 Google Scholar
  79. 79.
    Baydyk, T., Kussul, E., Bonilla, M.S.: Facial recognition on the basis of facial fragments. In: ICKST 2016 18th International Conference on Knowledge and Smart Technology, December 5–6, 2016, Miami, pp. 1–5 (accepted)Google Scholar
  80. 80.
    Chunli, L., Mou, Y.: Application of singular value decomposition in pest image detection system. In: International Conference on Measuring Technology and Mechatronics Automation (ICMTMA 2010), vol. 3, pp. 667–670Google Scholar
  81. 81.
    Blasco, J., et al.: Automatic sex detection of individuals of Ceratitis capitata by means of computer vision in a biofactory. Pest Manage. Sci. 65, 99–104 (2009)Google Scholar
  82. 82.
    Bechar, I., et al.: On-line video recognition and counting of harmful insects. In: International Conference on Pattern Recognition, pp. 4068–4071 (2010)Google Scholar
  83. 83.
    Gong, R., et al.: Fluorescence spectrum recognition of pesticides based on wavelet neural network. In: Sixth International Conference on Natural Computation: ICNC 2010, pp. 1248–1251.Google Scholar
  84. 84.
    Zhao, J., Liu, M., Yao, M.: Study on image recognition of insect pest of sugarcane cotton aphis based on rough set and fuzzy C-means clustering. In: Third Intern. Symposium on Intelligent Information Technology Application 2009, pp. 553–555Google Scholar
  85. 85.
    Sang, R., et al.: Image-based automatic recognition of larvae. In: Sixth International Symposium on Precision Engineering Measurements and Instrumentation: SPIE 2010, p. 11Google Scholar
  86. 86.
    Hongtao, Z., Bo, G., Yuxia, H.: Design and realization of a real-time detection device for insect pests of field crops. In: Conference on Electrical Power Systems and Computers 2011, pp. 439–444Google Scholar
  87. 87.
    Kelemen, E.: Artificial neural networks and artificial evolution as tools to study organization of spatial behavior in rats. In: Advances in Artificial Life, Sixth European Conference: ECAL, vol. 2159, pp. 236–241 (2001)zbMATHGoogle Scholar
  88. 88.
    Rodríguez Flores, M., Baydyk, T., Kussul, E.: Development of system based on neural classifier for recognition of larvae. In: First International Congress on Instrumentation and Applied Sciences ICIAS, SOMI XXV, October 26.29, 2010, Cancun, Quintana Roo, p. 8Google Scholar
  89. 89.
    Kussul, E., Makeyev, O., Baidyk, T., Martín-Gonzalez, A., Toledo-Ramirez, G.: Some applications of computer vision systems in micromechanics. In: Yoshida, S.R. (ed.) Computer Vision, pp. 1–39. Nova Science, Hauppauge (2011). ISBN: 978-1-61209-399-4 (with invitation)Google Scholar
  90. 90.
    Maren, A.J., Craig, T.H., Pap, R.M.: Handbook of Neural Computing Applications. Editorial Academic, Orlando (1990)zbMATHGoogle Scholar
  91. 91.
    Yang, Y., Peng, B., Wang, J.: A system for detection and recognition of pests in stored-grain based on video analysis. In: Li, D., Chen, Y. (eds.) CCTA 201, Part 1, IFIP AICT 344, pp. 119–124 (2011)Google Scholar
  92. 92.
    Han, A., Peng, H., Li, J., Han, J., Guo, X.: Recognition of pests based on compressive sensing theory. In: 2011 IEEE 3rd International Conference on Communication Software and Networks (ICCSN), pp. 263–266 (2011)Google Scholar
  93. 93.
    Fina, F., Birch, P., Young, R., Obu, J., Faithpraise, B., Chatwin, D.: Automatic plant pest detection and recognition using k-means clustering algorithm and correspondence filters. Int. J. Adv. Biotechnol. Res. 4(2), 189–199 (2013)Google Scholar
  94. 94.
    Bhadane, G., Sharma, S., Nerkar, V.B.: Early pest identification in agricultural crops using image processing techniques. Int. J. Electr. Electron. 2(2), 77–82 (2013)Google Scholar
  95. 95.
    Miranda, J.L., Gerardo, B.D., Tanguilig III, B.T.: Pest detection and extraction using image processing techniques. Int. J. Comput. Commun. Eng. 3(3), 189–192 (2014)Google Scholar
  96. 96.
    Zhang, J., Wang, R., Ch, X., Li, R.: Crop pests image recognition based on multi-features fusion. J. Comput. Inf. Syst. 10(12), 5121–5129 (2014)Google Scholar
  97. 97.
    Visión aplicada y elemento.: http://gavab.escet.urjc.es/recursos/seminario_07.pdf. Accessed April 2011
  98. 98.
    FAO: World agriculture: towards the years 2015 to 2030. Summary Report, United Nations Food and Agriculture, FAO (2002)Google Scholar
  99. 99.
    Nichols, M.P., Kogan, M.: A Bibliography of the Mexican Bean Beetle, Epilachna varivestis Mulsant (Coleoptera: Coccinellidae). Natural History Survey Division (1972)Google Scholar
  100. 100.
    Benkovskaya, G.V., Udalov, M.B.: Colorado Potato Beetles Investigations in South Urals. Nova Science, Hauppauge (2010)Google Scholar
  101. 101.
    Baidyk, T., Kussul, E., Rodriguez Flores, M.A., Vega, A.: Limited receptive area neural classifier for larvae recognition. In: WCCI 2010, IEEE World Congress on Computational Intelligence (IJCNN 2010), July 18–23, 2010, Barcelona, pp. 2929–2932 (2010)Google Scholar
  102. 102.
    Baidyk, T., Makeyev, O., Kussul, E., Rodríguez Flores, M.: Limited receptive area neural classifier for larvae recognition. In: Soundararajan, R.P. (ed.) Pesticides: Advances in Chemical and Botanical Pesticides. INTECH, Rijeka (2012)Google Scholar
  103. 103.
    Schwartz, R.: Method and a circuit for determining a contour in an image. Patent Number 4433912, issued February 28, 1984Google Scholar
  104. 104.
    Baydyk, T., Kussul, E., Cabello, E., Conde, C.: Colorado beetles recognition with neural networks. In: The Eleventh All-Ukrainian International Conference, UkrObraz 2012, Kyiv, Ukraine, pp. 121–123 (2012)Google Scholar
  105. 105.
    Roldán Serrato, K.L., Baydyk, T., Kussul, E., Escalante-Estrada, A., Velasco-Herrera, G.: Random subspace classifier for image recognition. In: The 12th All-Ukrainian International Conference on Signal/Image Processing and Pattern Recognition, UkrObraz 2014, Kijv, Ukraine, 3–7 Nov 2014, pp. 9–12 (2014)Google Scholar
  106. 106.
    Roldán-Serrato, L., Baydyk, T., Kussul, E., Escalante-Estrada, A., Gonzalez Rodriguez, M.T.: Recognition of pests on crops with a Random Subspace Classifier, IEEE IWOBI 2015, 10–12 June 2015, pp. 21–26Google Scholar
  107. 107.
    Baidyk, T., Kussul, E., Vega, A., Gonzalez, C.: Tissue analysis with random subspace neural classifier. In: International Conference on Innovative Technologies, In-Tech, Bratislava, 1.09.2011–3.09.2011, pp. 45–49 (2011)Google Scholar
  108. 108.
    Baydyk, T., Escalante Estrada, J.A.S., Kussul, E., Rodriguez Gonzalez, M.T., Roldan Serrato, K.L.: Banco de imágenes compuesto por 200 muestras con escarabajo MBB (Mexican Beam Beetle) en cultivos de frijol, Certificado de Registro Publico del Derecho de Autor, N 03-2016-121313025300-01, Mexico, D.F., a 16 de diciembre de 2016Google Scholar
  109. 109.
    Baydyk, T., Escalante Estrada, J.A.S., Kussul, E., Rodriguez Gonzalez, M.T., Roldan Serrato, K.L.: Banco de imágenes compuesto por 160 muestras con escarabajo MBB (Mexican Beam Beetle) bajo condiciones de invernadero compilación de datos (base de datos), Certificado de Registro Publico del Derecho de Autor, N 03-2016-121313294900-01, Mexico, D.F., a 16 de diciembre de 2016Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tetyana Baydyk
    • 1
  • Ernst Kussul
    • 1
  • Donald C. Wunsch II
    • 2
  1. 1.Instituto de Ciencias Aplicadas y Tecnología (ICAT)Universidad Nacional Autónoma de México (UNAM)Mexico CityMexico
  2. 2.Dept. of Electrical and Computer EngineeringMissouri University of Science and TechnologyRollaUSA

Personalised recommendations