Advertisement

Heat Engines

  • Tetyana Baydyk
  • Ernst Kussul
  • Donald C. Wunsch II
Chapter
Part of the Computational Intelligence Methods and Applications book series (CIMA)

Abstract

Currently, Stirling cycle and Rankine cycle heat engines are used to transform the heat energy from solar concentrators into mechanical and electrical energy. The Rankine cycle is used in large-scale solar power plants, and the Stirling cycle can be used for small-scale solar power plants. The Stirling cycle heat engine has many advantages, such as high efficiency, long service life, silent operation, etc. However, the Stirling cycle is good for high temperature differences (up to 700 °C). It demands the use of expensive materials and has problems with lubrication. Its efficiency depends on the efficiency of the heat regenerator. The design and manufacture of a heat regenerator is not a trivial problem because the regenerator has to be placed in the internal space of the engine. It is possible to avoid this problem if the regenerator is placed outside of the internal engine space. To realize this idea, it is necessary to develop the Ericsson cycle heat engine (ECHE). This book’s authors propose a structure of this engine [1]. A computer simulation was designed to evaluate the Ericsson engine parameters, and the obtained results are discussed in this chapter.

References

  1. 1.
    Kussul, E., Makeyev, O., Baidyk, T., Olvera, O.: Design of Ericsson heat engine with micro channel recuperator. ISRN Renew. Energy Article ID 613642, 8 p. (2012).  https://doi.org/10.5402/2012/613642 CrossRefGoogle Scholar
  2. 2.
    Kussul, E., Baidyk, T., Lara-Rosano, F., Saniger, J.M., Bruce, N.: Support frame for micro facet solar concentrator. In: The 2nd IASME/WSEAS International Conference on Energy and Environment (EE’07), pp. 300–304, Portoroz (Portorose), Slovenia, 15–17 May 2007Google Scholar
  3. 3.
    Kussul, E., Baidyk, T., Makeyev, O., Lara-Rosano, F., Saniger, J.M., Bruce, N.: Flat facet parabolic solar concentrator with support cell for one and more mirrors. WSEAS Trans. Power Syst. 3(8), 577–586 (2008)Google Scholar
  4. 4.
    Kussul, E., Baidyk, T., Lara, F., Saniger, J., Bruce, N., Estrada, C.: Micro facet solar concentrator. Int. J. Sustain. Energy. 27(2), 61–71 (2008)CrossRefGoogle Scholar
  5. 5.
    Kongtragool, B., Wongwises, S.: A review of solar-powered Stirling engines and low temperature differential Stirling engines. Renew. Sustain. Energy Rev. 7, 131–154 (2003)CrossRefGoogle Scholar
  6. 6.
    American Stirling Company (beautiful Stirling engines and kits). http://www.stirlingengine.com/
  7. 7.
    Hirata, K.: Schmidt Theory for Stirling Engines. http://www.bekkoame.ne.jp/~khirata/academic/schmidt/schmidt.htm (1997)
  8. 8.
    Kongtragool, B., Wongwises, S.: Performance of low temperature differential Stirling engines. Renew. Energy. 32, 547–566 (2007)CrossRefGoogle Scholar
  9. 9.
    Chen, J., Yan, Z., Chen, L., Andresen, B.: Efficiency bound of a solar-driven Stirling heat engine system. Int. J. Energy Res. 22, 805–812 (1998)CrossRefGoogle Scholar
  10. 10.
    Berrin Erbay, L., Yavuz, H.: Analysis of an irreversible Ericsson engine with a realistic regenerator. Appl. Energy. 62(3), 155–167 (1999)CrossRefGoogle Scholar
  11. 11.
    Bonnet, S., Alaphilippe, M., Stouffs, P.: Energy, exergy and cost analysis of a micro-generation system based on an Ericsson engine. Int. J. Therm. Sci. 44, 1161–1168 (2005)CrossRefGoogle Scholar
  12. 12.
    Kussul, E., Baydyk, T.: Thermal motor for solar power plants. In: 3er Congreso Internacional de Ciencias, Tecnología, Artes y Humanidades, pp. 684–688, Coatzacoalcos, Veracruz, México, 3-6 de junio 2009Google Scholar
  13. 13.
    Ruiz-Huerta, L., Caballero-Ruiz, A., Ruiz, G., Ascanio, G., Baydyk, T., Kussul, E., Chicurel, R.: Diseño de un motor de ciclo Ericsson modificado empleando energía solar, Congreso de Instrumentación SOMI XXIV, pp. 1–7, Mérida, Yucatán, México, 14–16 de Octubre de 2009Google Scholar
  14. 14.
    Kussul, E.M., Rachkovskij, D.A., Baidyk, T.N., Talayev, S.A.: Micromechanical engineering: a basis for the low-cost manufacturing of mechanical micro devices using microequipment. J. Micromech. Microeng. 6, 410–425 (1996)CrossRefGoogle Scholar
  15. 15.
    Kussul, E., Baidyk, T., Ruiz-Huerta, L., Caballero, A., Velasco, G., Kasatkina, L.: Development of micromachine tool prototypes for microfactories. J. Micromech. Microeng. 12, 795–813 (2002)CrossRefGoogle Scholar
  16. 16.
    Kussul, E., Baidyk, T., Wunsch, D.: Neural Networks and Micro Mechanics, p. 210. Springer, Berlin (2010)CrossRefGoogle Scholar
  17. 17.
    Kussul, E.: Estimation of Ericsson heat engine parameters. In: 1st International Congress on Instrumentation and Applied Sciences ICIAS, SOMI XXV, p. 6, Cancun, Quintana Roo, Mexico, 26–29, October 2010Google Scholar
  18. 18.
    Kussul, E., Baidyk T., Lara-Rosano F., Saniger Blesa, J.M., Ascanio, G., Bruce, N.: Method and Device for Mirrors Position Adjustment of a Solar Concentrator. USA Patent N US 8,631,995 B2, 21 Jan 2014Google Scholar
  19. 19.
    Kussul, E., Baidyk, T., Lara-Rosano, F., Saniger Blesa, J.M., Bruce, N.: Concentrador Solar, Mexico. Patente No 309274, 26.04.2013Google Scholar
  20. 20.
    Kussul E., Baidyk T., Lara-Rosano F., Saniger Blesa, J.M., Ascanio, G., Bruce, N.: Método y dispositivo de ajuste de posición de espejos de un concentrador solar, Mexico. Patente No 313963, 30.09.2013Google Scholar
  21. 21.
    Teraji D.G.: Concentrated Solar Power Hybrid Gas Turbine Demonstration Test Results, ASME 2015 Power Conference, p. 6, San Diego, California, June 28–July 2, 2015, Paper No. POWER2015-49572.  https://doi.org/10.1115/POWER2015-49572
  22. 22.
    Touré, A.: Pascal Stouffs modeling of the Ericsson engine. Energy. 76(1), 445–452 (2014)CrossRefGoogle Scholar
  23. 23.
    Lontsi, F., Hamandjoda, O., Djanna, K.F., Stouffs, P., Nganhou, J.: Dynamic modeling of a small open Joule cycle reciprocating Ericsson engine: simulation results. Energy Sci. Eng. 1(3), 109–117 (2013).  https://doi.org/10.1002/ese3.13 CrossRefGoogle Scholar
  24. 24.
    Fula, A., Stouffs, P., Sierra, F.: In-cylinder heat transfer in an Ericsson engine prototype. In: International Conference on Renewable Energies and Power Quality (ICREPQ’13), p. 6, No. 11, Bilbao (Spain), 20–22 March 2013Google Scholar
  25. 25.
    Kongtragool, B., Wongwises, S.: A review of solar-powered Stirling engines and low temperature differential Stirling engines. Renew. Sustain. Energy Rev. 7(2), 131–154 (2003)CrossRefGoogle Scholar
  26. 26.
    Kongtragool, B., Wongwises, S.: Performance of low temperature differential Stirling engines. Renew. Energy. 32(4), 547–566 (2007)CrossRefGoogle Scholar
  27. 27.
    Aran, G.: Aerothermodynamic analysis and design of a rolling piston engine, p. 124. Thesis Submitted to the Graduate School of Natural and Applied Sciences of Middle East Technical University for the Degree of Master of Science in Aerospace Engineering, June 2007Google Scholar
  28. 28.
    Wei, G., Hui, L.C., Wang, Y.Z.: The performance optimization of rolling piston compressors based on CFD simulation. In: Proceedings of International Compressor Engineering Conference, Purdue, Paper 1621. http://docs.lib.purdue.edu/icec/1621 (2004)
  29. 29.
    Li, Z., Minxia, L., Yitai, M., Zhongyan, L.: Simulation analysis of a two rolling piston expander replacing a throttling valve in a conventional refrigerant heat pump system. In: Proceedings of International Compressor Engineering Conference, N 1339, pp. 1–10, Purdue, 16–19 July 2012Google Scholar
  30. 30.
    Cho, I.-S., Jung, J.-Y.: The influence of vane on the lubrication characteristics between the vane and rolling piston of a rotary compressor. J. Mech. Sci. Technol. 20(12), 2242–2249 (2006)CrossRefGoogle Scholar
  31. 31.
    Cho, I.-S., Seok-Hyung, O., Jung, J.-Y.: The lubrication characteristics between the vane and rolling piston in rotary compressor used for refrigeration and air-conditioning systems. KSME Int. J. 15(5), 562–568 (2001)CrossRefGoogle Scholar
  32. 32.
    Erbay, L.B., Yavuz, H.: Analysis of an irreversible Ericsson engine with a realistic regenerator. Appl. Energy. 62(3), 155–167 (1999)CrossRefGoogle Scholar
  33. 33.
    Jun, Y., Long, Z., Li, Z., Yuan, L.H.: Development of a two-cylinder rolling piston CO2 expander. In: Proceedings of International Compressor Engineering Conference at Purdue, Paper 2022, 1-5, 12–15 July 2010. http://docs.lib.purdue.edu/icec/2022
  34. 34.
    Sakurai, E., Hamilton, J.F.: Measurement of operating conditions of rolling piston type rotary compressors. In: Proceedings of International Compressor Engineering Conference, pp. 60–68, Paper 373. http://docs.lib.purdue.edu/icec/373 (1982)
  35. 35.
    Ishii, N., Yamamura, M., Muramatsu, S., Yamamoto, S., Sakai, M.: Mechanical efficiency of a variable speed scroll compressor. In: Proceedings of International Compressor Engineering Conference, pp. 192–199, Paper 705. http://docs.lib.purdue.edu/icec/705 (1990)

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Tetyana Baydyk
    • 1
  • Ernst Kussul
    • 1
  • Donald C. Wunsch II
    • 2
  1. 1.Instituto de Ciencias Aplicadas y Tecnología (ICAT)Universidad Nacional Autónoma de México (UNAM)Mexico CityMexico
  2. 2.Dept. of Electrical and Computer EngineeringMissouri University of Science and TechnologyRollaUSA

Personalised recommendations