Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 243 Accesses

Abstract

The proton-proton (pp) Large Hadron Collider (LHC) is the final stage of the accelerator complex at the European Centre for Nuclear Research (CERN), located near Geneva, on the Franco-Swiss border. The LHC and its associated accelerator chain are the culmination of over 100 years of research into the production, acceleration, and focussing of charged particles, with the LHC being the world’s largest and highest energy accelerator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Most operation is dedicated to proton-proton collisions, which is the only type relevant to the work presented in this thesis.

  2. 2.

    This distinction is important, both due to the asymmetry of the LHCb and ALICE detectors with respect to the beam axis, and also to cancel systematic effects of the large boost caused by the difference in momenta.

  3. 3.

    The LHC also operated for a short time in 2010 and 2013 with specialised conditions, however no analysis of data collected during these periods is presented in this thesis.

References

  1. F. Marcastel, CERN’s Accelerator complex. La chaîne des accélérateurs du CERN

    Google Scholar 

  2. L. Evans, P. Bryant, L.H.C. Machine, J. Instrum. 3, S08001 (2008)

    Article  Google Scholar 

  3. F. Follin, D. Jacquet, Implementation and experience with luminosity levelling with offset beam, in Proceedings of the ICFA Mini-Workshop on Beam-Beam Effects in Hadron Colliders (BB2013): (CERN, Switzerland, 2014), pp. 183–187. 18–22 March 2013. https://doi.org/10.5170/CERN-2014-004.183, arXiv:1410.3667. [183(2014)]

  4. L. Rossi, Superconductivity: Its role, its success and its setbacks in the large hadron collider of CERN. Supercond. Sci. Technol. 23, 034001 (2010)

    Article  ADS  Google Scholar 

  5. E.D. Courant, M.S. Livingston, H.S. Snyder, The strong-focusing synchroton - a new high energy accelerator. Phys. Rev. 88, 1190 (1952). https://doi.org/10.1103/PhysRev.88.1190

    Article  ADS  MATH  Google Scholar 

  6. S. Baird, Accelerators for pedestrians; rev. version. https://cds.cern.ch/record/1017689, http://CERN-AB-Note-2007-014.PS-OP-Note-95-17-Rev-2, CERN-PS-OP-Note-95-17-Rev-2

  7. M. Lamont, Status of the lhc. J. Phys.: Conf. Ser. 455, 012001 (2013)

    Google Scholar 

  8. LHCb, R. Aaij et al., Measurement of \(\sigma (pp \rightarrow b \bar{b} X)\) at \(\sqrt{s}=7~\rm {TeV}\) in the forward region. Phys. Lett. B694, 209 (2010). https://doi.org/10.1016/j.physletb.2010.010, arXiv:1009.2731

  9. A.D. Martin, W.J. Stirling, R.S. Thorne, G. Watt, Parton distributions for the LHC. Eur. Phys. J. C 63, 189 (2009). https://doi.org/10.1140/epjc/s10052-009-1072-5. arXiv:0901.0002

    Article  ADS  MATH  Google Scholar 

  10. E. Norrbin, T. Sjostrand, Production and hadronization of heavy quarks. Eur. Phys. J. C 17, 137 (2000). https://doi.org/10.1007/s100520000460. arXiv:hep-ph/0005110

    Article  ADS  Google Scholar 

  11. ATLAS, G. Aad et al., Measurement of the flavour composition of dijet events in \(pp\) collisions at \(\sqrt{s}=7\) TeV with the ATLAS detector. Eur. Phys. J. C73(2), 2301 (2013). https://doi.org/10.1140/epjc/s10052-013-2301-5, arXiv:1210.0441

  12. N. Cartiglia, Measurement of the proton-proton total, elastic, inelastic and diffractive cross sections at 2, 7, 8 and 57 TeV. arXiv:1305.6131

  13. BABAR collaboration, B. Aubert et al., Measurement of the \({e}^{+}{e}^{-}\rightarrow b\overline{b}\) cross section between \(\sqrt{s}=10.54\) and 11.20 gev. Phys. Rev. Lett. 102, 012001 (2009). https://doi.org/10.1103/PhysRevLett.102.012001

  14. Y. Amhis et al., Averages of \(b\)-hadron \(c\)-hadron, and \(\tau \)-lepton properties as of summer 2016. arXiv:1612.07233

  15. The ALICE collaboration, T. A. collaboration,, The ALICE experiment at the CERN LHC. J. Instrum. 3, S08002 (2008)

    Google Scholar 

  16. The ATLAS collaboration, G. Aad et al., The ATLAS collaboration, The ATLAS Experiment at the CERN Large Hadron Collider. J. Instrum. 3, S08003 (2008)

    Google Scholar 

  17. The CMS collaboration, The CMS collaboration, The CMS experiment at the CERN LHC. JINST 3, S08004 (2008). https://doi.org/10.1088/1748-0221/3/08/S08004

    Article  Google Scholar 

  18. LHCb collaboration, A.A. Alves Jr. et al., The LHCb detector at the LHC. JINST 3, S08005 (2008). https://doi.org/10.1088/1748-0221/3/08/S08005

    ADS  Google Scholar 

  19. ATLAS, G. Aad et al., Observation of a new particle in the search for the standard model higgs boson with the ATLAS detector at the LHC. Phys. Lett. 1, B716 (2012). https://doi.org/10.1016/j.physletb.2012.08.020, arXiv:1207.7214

    Article  ADS  Google Scholar 

  20. CMS, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC. Phys. Lett. B716, 30 (2012). https://doi.org/10.1016/j.physletb.2012.08.021, arXiv:1207.7235

    Article  ADS  Google Scholar 

  21. ATLAS, CMS, G. Aad etal., Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC \(pp\) collision data at \(\sqrt{s}=\) 7 and 8 TeV. arXiv:1606.02266

  22. CMS, V. Khachatryan et al., Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 TeV. Eur. Phys. J. C75(CMS–HIG–14–009, CERN–PH–EP–2014–288 212), 00 (2015). https://doi.org/10.1140/epjc/s10052-015-3351-7, arXiv:1412.8662

  23. ATLAS, G. Aad et al., Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector. Eur. Phys. J. C75(10), 476 (2015). https://doi.org/10.1140/epjc/s10052-015-3685-1, https://doi.org/10.1140/epjc/s10052-016-3934-y. arXiv:1506.05669. [Erratum: Eur. Phys. J.C76,no.3,152(2016)]

  24. ATLAS, G. Aad et al., Determination of spin and parity of the Higgs boson in the \(WW^*\rightarrow e \nu \mu \nu \) decay channel with the ATLAS detector. Eur. Phys. J. C75(5), 231 (2015). https://doi.org/10.1140/epjc/s10052-015-3436-3, arXiv:1503.03643

  25. ATLAS, G. Aad et al., Measurements of Higgs boson production and couplings in the four-lepton channel in pp collisions at center-of-mass energies of 7 and 8 TeV with the ATLAS detector. Phys. Rev. D91(1), 012006 (2015). https://doi.org/10.1103/PhysRevD.91.012006, arXiv:1408.5191

  26. CMS, V. Khachatryan et al., Observation of the diphoton decay of the Higgs boson and measurement of its properties. Eur. Phys. J. C74(10), 3076 (2014). https://doi.org/10.1140/epjc/s10052-014-3076-z, arXiv:1407.0558

  27. ATLAS, CMS, A. Cakir, Searches for beyond standard model physics at the LHC: Run1 summary and Run2 Prospects. PoS FPCP2015, 024 (2015). arXiv:1507.08427

  28. ATLAS, G. Aad et al., Summary of the ATLAS experiment’s sensitivity to supersymmetry after LHC Run 1 – interpreted in the phenomenological MSSM. JHEP 10, 134 (2015). https://doi.org/10.1007/JHEP10(2015)134, arXiv:1508.06608

  29. ATLAS, CMS, K. Beernaert, Top-quark properties at the LHC, in 51st Rencontres de Moriond on QCD and high energy interactions (La Thuile, Italy, 2016) 19–25 March 2016. arXiv:1605.05493

  30. ATLAS, CMS, A. de Cosa, LHC results for dark matter from ATLAS and CMS, in Proceedings of the 12th Conference on the Intersections of Particle and Nuclear Physics (CIPANP 2015), Vail, USA, 19–24 May 2015. arXiv:1510.01516

  31. LHCb collaboration, R. Aaij et al., Measurement of \(B_s^0\) violation and the \(B_s^0\rightarrow \) meson decay width difference with \(B_s^0\rightarrow J/\psi K^{+}K^{-}\) and \(B_s^0\rightarrow J/\psi \pi ^{+}\pi ^{-}\) decays. Phys. Rev. D87, 112010 (2013). https://doi.org/10.1103/PhysRevD.87.112010, arXiv:1304.2600

  32. CMS, V. Khachatryan et al., Measurement of the CP-violating weak phase \(\phi _s\) and the decay width difference \(\Delta \Gamma _s\) using the \(B_s^0 \rightarrow J/ \psi \phi \) (1020) decay channel in pp collisions at \({\sqrt{s}}=\) 8 TeV. Phys. Lett. B757, 97 (2016). https://doi.org/10.1016/j.physletb2016.03.046, arXiv:1507.07527

  33. ATLAS, G. Aad et al., Time-dependent angular analysis of the decay \(B_{s}^{0} \rightarrow J/{\psi \phi }\) and extraction of \(\Delta \Gamma _{s}\) and the CP-violating weak phase \(\phi _s\) by ATLAS. JHEP 12, 072 (2012). https://doi.org/10.1007/JHEP12(2012)072, arXiv:1208.0572

  34. CMS and LHCb collaborations, V. Khachatryan et al., Observation of the rare \(B_s^0\rightarrow \mu ^+\mu ^-\) decay from the combined analysis of CMS and LHCb data. Nature 522, 68 (2015). https://doi.org/10.1038/nature14474, arXiv:1411.4413

  35. C. collaboration, Technical proposal for the upgrade of the CMS detector through 2020. http://cdsweb.cern.ch/search?p=CERN-LHCC-2011-006.LHCC-P-004&f=reportnumber&action_search=Search&c=LHCb+Reports. CERN-LHCC-2011-006. LHCC-P-004

  36. Letter of Intent for the Phase-I Upgrade of the ATLAS Experiment. http://cdsweb.cern.ch/search?p=CERN-LHCC-2011-012.LHCC-I-020&f=reportnumber&action_search=Search&c=LHCb+Reports. CERN-LHCC-2011-012. LHCC-I-020

  37. J. Schukraft, Heavy-ion physics with the ALICE experiment at the CERN Large Hadron Collider. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 370, 917 (2012). https://doi.org/10.1098/rsta.2011.0469

    Article  ADS  Google Scholar 

  38. W. Barter, A brief review of measurements of electroweak bosons at the LHCb experiment in LHC Run 1. Submitted to: Mod. Phys. Lett. (2016). arXiv:1607.08499

  39. LHCb, D. Johnson, Electroweak physics and QCD at LHCb, in Proceedings of the 50th Rencontres de Moriond, QCD and high energy interactions (La Thuile, Italy, 2015), pp. 221–224. 21-28 March 2015. arXiv:1506.09106

  40. T. Gershon, M. Needham, Heavy flavour physics at the LHC. Comptes Rendus Physique 16, 435 (2015). https://doi.org/10.1016/j.crhy.2015.04.001. arXiv:1408.0403

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel O’Hanlon .

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Hanlon, D. (2018). The Large Hadron Collider. In: Studies of CP-Violation in Charmless Three-Body b-Hadron Decays. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-02206-8_3

Download citation

Publish with us

Policies and ethics