Advertisement

Semiconductors pp 547-573 | Cite as

Organic Semiconductors

  • Josefina Alvarado RiveraEmail author
  • Amanda Carrillo Castillo
  • María de la Luz Mota González
Chapter

Abstract

Semiconductor technologies that drive electronic appliances and devices such as TV displays, computers, tablets, and cell phones have been evolving rapidly. The pursuit of lightweight, thinner, high image resolution, energy-saving displays, and devices have encouraged scientists around the world to find new materials and its combinations to follow-up with those needs. In this respect, organic semiconductors have been extensively studied in the last two decades because of their versatility, low processing requirements, flexibility, and environment-friendly characteristics. Unlike inorganic materials, organic semiconductors do not exhibit a periodic atomic arrangement, and charge transport occurs along their carbon backbones with conjugated bonds. In this chapter, the structural characteristics, classification, conduction phenomena, and optical properties of polymers and small molecules are presented. Organic photovoltaic devices, thin-film transistors, and organic light-emitting diodes are the most common application of these materials, and their most important features are explained. A concise summary of the most commonly used vapor and solution processing techniques for organic semiconductor deposition is presented.

Keywords

Organic semiconductors Vacuum deposition Solution processing Conjugated polymers Small molecule Conduction phenomena Optical properties OLED OFET OPV 

References

  1. 1.
    Angus R (2008) The materials science of semiconductors. Springer, LondonGoogle Scholar
  2. 2.
    Ling MM, Bao Z (2004) Thin film deposition, patterning, and printing in organic thin film transistors. Chem Mater 16(23):4824–4840.  https://doi.org/10.1021/cm0496117CrossRefGoogle Scholar
  3. 3.
    Perepichka DF, Perepichka IF, Meng H, Wudl F (2007) Light-emitting polymers. In: Li Z, Meng H (eds) Organic light-emitting materials and devices. CRC Press, Boca Raton, Fla, pp 45–293Google Scholar
  4. 4.
    Rolin C, Vasseur K, Genoe J, Heremans P (2010) Growth of pentacene thin films by in-line organic vapor phase deposition. Org Electron 11(1):100–108.  https://doi.org/10.1016/j.orgel.2009.10.005CrossRefGoogle Scholar
  5. 5.
    Baldo M, Deutsch M, Burrows P, Gossenberger H, Gerstenberg M, Ban V, Forrest S (1998) Organic vapor phase deposition. Adv Mater 10(18):1505–1514.  https://doi.org/10.1002/(SICI)1521-4095(199812)10:18%3c1505:AID-ADMA1505%3e3.0.CO;2-GCrossRefGoogle Scholar
  6. 6.
    Forrest SR (2004) The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 428:911–918.  https://doi.org/10.1038/nature02498CrossRefGoogle Scholar
  7. 7.
    Mahon K, Zhou TXSR, Forrest M, Schwambera N Meyer (2002) Organic VPD shows promise: for OLED volume production. Solid State Technol 45(7):131–139Google Scholar
  8. 8.
    McGraw GJ, Forrest S (2012) Fluid dynamics and mass transport in organic vapor jet printing. J Appl Phys 111(4):043501.  https://doi.org/10.1063/1.3680881CrossRefGoogle Scholar
  9. 9.
    Shtein M, Peumans P, Benziger JB, Forrest SR (2004) Direct, mask-asks solvent-solvent printing of molecular organic semiconductors. Adv Mater 16(18):1615–1620.  https://doi.org/10.1002/adma.200400260CrossRefGoogle Scholar
  10. 10.
    Biswas S, Pipe KP, Shtein M (2010) Solvent-free, direct printing of organic semiconductors in atmosphere. Appl Phys Lett 96(26):125CrossRefGoogle Scholar
  11. 11.
    Yamashita A, Hayashi T (1996) Organic molecular beam deposition of metallophthalocyanines for optolelectronics applications. Adv Mater 8(10):791–799.  https://doi.org/10.1002/adma.19960081004CrossRefGoogle Scholar
  12. 12.
    Rompf C, Kowalsky W (1995) Organic molecular beam deposition (OMBD) for photonic and electronic devices. Annual report 1995, Institut fur Hochfrequenztechnik, TU Braunschweig. https://www.tu-braunschweig.de/Medien-DB/ihf/p045-047.pdf 30 July 2016
  13. 13.
    Constantinescu C, Rapp L, Rotaru P, Delaporte P, Alloncle AP (2015) Pulsed laser processing of poly (3, 3‴-didodecyl quarter thiophene) semiconductor for organic thin film transistors. Chem Phys 450:32–38.  https://doi.org/10.1016/j.chemphys.2015.02.004CrossRefGoogle Scholar
  14. 14.
    Gritsenko KP, Tolstopyatov EM, Krasovsky AM (2001) Thin film deposition by laser ablation of polymer and dye in a vacuum. Optical Mem Neural Netw 10(3):173–194Google Scholar
  15. 15.
    Gritsenko KP, Krasovsky AM (2003) Thin-film deposition of polymers by vacuum degradation. Chem Rev 103(9):3607–3650.  https://doi.org/10.1021/cr010449qCrossRefGoogle Scholar
  16. 16.
    Eason R (ed) (2007) Pulsed laser deposition of thin films: applications-led growth of functional materials. Wiley, HobokenGoogle Scholar
  17. 17.
    Piqué A (2011) The matrix-assisted pulsed laser evaporation (MAPLE) process: origins and future directions. Appl Phys A Matter Sci Process 105(3):517–528.  https://doi.org/10.1007/s00339-011-6594-7CrossRefGoogle Scholar
  18. 18.
    Delaporte Ph, Ainsebaa A, Alloncle AP, Benetti M, Boutopoulos C, Cannata D, Di Pietrantonio F, Dinca V, Dinescu M, Dutroncy J, Eason R, Feinaugle M, Fernández-Pradas JM, Grisel A, Kaur K, Lehmann U, Lippert T, Loussert C, Makrygianni M, Manfredonia I, Mattle T, Morenza JL, Nagel M, Nüesch F, Palla-Papavlu A, Rapp L, Rizvi N, Rodio G, Sanaur S, Serra P, Shaw-Stewart J, Sones CL, Verona E, Zergioti I (2013) Applications of laser printing for organic electronics. In: Proceeding of SPIE 8607, Laser applications in microelectronic and optoelectronic manufacturing (LAMOM).  https://doi.org/10.1117/12.2004062
  19. 19.
    Rapp L, Constantinescu C, Delaporte P, Alloncle AP (2014) Laser-induced forward transfer of polythiophene-based derivatives for fully polymeric thin film transistors. Org Electron 15(8):1868–1875.  https://doi.org/10.1016/j.orgel.2014.04.029CrossRefGoogle Scholar
  20. 20.
    Shaw-Stewart J, Lippert T, Nagel M, Nüesch F, Wokaun A (2012) A simple model for flyer velocity from laser-induced forward transfer with a dynamic release layer. Appl Surf Sci 258(23):9309–9931.  https://doi.org/10.1016/j.apsusc.2011.08.111CrossRefGoogle Scholar
  21. 21.
    Chrisey D, Huber GK (eds) (1994) Pulsed laser deposition of thin films. Wiley, New YorkGoogle Scholar
  22. 22.
    Willmott PR, Huber JR (2000) Pulsed laser vaporization and deposition. Rev Mod Phys 72(1):315.  https://doi.org/10.1103/RevModPhys.72.315CrossRefGoogle Scholar
  23. 23.
    Yang X, Tang Y, Yu M, Qin Q (2000) Pulsed laser deposition of aluminum tris-8-hydroxyquinline thin films. Thin Solid Films 358(1):187–190.  https://doi.org/10.1016/S0040-6090(99)00687-2CrossRefGoogle Scholar
  24. 24.
    Chneider CW, Lippert T (2010) Laser ablation and thin film deposition. Laser processing of materials, vol 139. Springer, Heidelberg, pp 89–112CrossRefGoogle Scholar
  25. 25.
    Caricato AP, Anni M, Cesaria M, Lattante S, Leggieri G, Leo C, Martino M, Perulli A, Resta V (2015) MAPLE-deposited PFO films: influence of the laser fluence and repetition rate on the film emission and morphology. Appl Phys B 119(3):453–461.  https://doi.org/10.1007/s00340-015-6078-0CrossRefGoogle Scholar
  26. 26.
    Bloisi F, Pezzella A, Barra M, Alfè M, Chiarella F, Cassinese A, Vicari L (2011) Effect of substrate temperature on MAPLE deposition of synthetic eumelanin films. Appl Phys A 105(3):619–627.  https://doi.org/10.1007/s00339-011-6603-xCrossRefGoogle Scholar
  27. 27.
    Zergioti I, Mailis S, Vainos NA, Papakonstantinou P, Kalpouzos C, Grigoropoulos CP, Fotakis C (1998) Microdeposition of metal and oxide structures using ultrashort laser pulses. Appl Phys A-Matter 66(5):579–582.  https://doi.org/10.1007/s003390050717CrossRefGoogle Scholar
  28. 28.
    Yang L, Wang CY, Ni XC, Wang ZJ, Jia W, Chai L (2006) Microdroplet deposition of copper film by femtosecond laser-induced forward transfer. Appl Phys Lett 89(16):161110.  https://doi.org/10.1063/1.2364457CrossRefGoogle Scholar
  29. 29.
    Dinca V, Kasotakis E, Catherine J, Mourka A, Mitraki A, Popescu A, Dinescu M, Farsari M, Fotakis C (2007) Development of peptide-based patterns by laser transfer. Appl Surf Sci 254(4):1160–1163.  https://doi.org/10.1016/j.apsusc.2007.08.042CrossRefGoogle Scholar
  30. 30.
    Pohl R, Jansink M, Römer GRBE, Huis AJ (2015) Solid-phase laser-induced forward transfer of variable shapes using a liquid-crystal spatial light modulator. Appl Phys A 120(2):427–434.  https://doi.org/10.1007/s00339-015-9212-2CrossRefGoogle Scholar
  31. 31.
    Rapp L, Biver E, Alloncle AP, Delaporte P (2014) High-Speed laser printing of silver nanoparticles ink. J Laser Micro/Nanoeng 9(1):5–9.  https://doi.org/10.2961/jlmn.2014.01.0002CrossRefGoogle Scholar
  32. 32.
    Hennig G, Baldermann T, Nussbaum C, Rossier M, Brockelt A, Schuler L, Hochstein G (2012) Lasersonic® LIFT process for large area digital printing. J Laser Micro/Nanoeng 7(3):299–305.  https://doi.org/10.2961/jlmn.2012.03.0012CrossRefGoogle Scholar
  33. 33.
    Li M, An C, Pisula W, Mullen K (2014) Alignment of organic semiconductor microstripes by two-phase dip-coating. Small 10(10):1926–1931.  https://doi.org/10.1002/smll.201303182CrossRefGoogle Scholar
  34. 34.
    Wang B, Zhu T, Huang L, Tam TLD, Cui Z, Ding J, Chi L (2015) Addressable growth of oriented organic semiconductor ultra-thin films on hydrophobic surface by direct dip-coating. Org Electron 24:170–175.  https://doi.org/10.1016/j.orgel.2015.05.038CrossRefGoogle Scholar
  35. 35.
    Shan L, Liu D, Li H, Xu X, Shan B, Xu JB, Miao Q (2015) Monolayer field-effect transistors of nonplanar organic semiconductors with brickwork arrangement. Adv Mater 27(22):3418–3423.  https://doi.org/10.1002/adma.201500149CrossRefGoogle Scholar
  36. 36.
    Kistler SF, Schweizer PM (eds) (1997) Liquid film coating. Chapman & Hall, LondonGoogle Scholar
  37. 37.
    Peralta JM, Meza BE, Zorrilla SE (2014) Mathematical modeling of a dip-coating process using a generalized Newtonian fluid. 1. Model development. Ind Eng Chem Res 53(15):6521–6532.  https://doi.org/10.1021/ie500407tCrossRefGoogle Scholar
  38. 38.
    Diao Y, Shaw L, Bao Z, Mannsfeld SCB (2014) Morphology control strategies for solution-processed organic semiconductor thin films. Energy Environ Sci 7:2145–2159.  https://doi.org/10.1039/C4EE00688GCrossRefGoogle Scholar
  39. 39.
    Rogowski RZ, Dzwilewski A, Kemerink M, Darhuber AA (2011) Solution processing of semiconducting organic molecules for tailored charge transport properties. J Phys Chem C 115(23):11758–11762.  https://doi.org/10.1021/jp201219hCrossRefGoogle Scholar
  40. 40.
    Burroughes JH, Bradley DDC, Brown AR, Marks RN, Mackay K, Friend RH, Holmes AB (1990) Light-emitting diodes based on conjugated polymers. Nature 347(6293):539–541CrossRefGoogle Scholar
  41. 41.
    Sonoyama T, Ito M, Seki S, Miyashita S, Xia S, Brooks J, Brown JJ (2008) Inkjet printable phosphorescent organic light emitting diode devices. J Soc Inf Display 16(12):1229–1236.  https://doi.org/10.1889/JSID16.12.1229CrossRefGoogle Scholar
  42. 42.
    Xia S, Cheon KO, Brooks JJ, Rothman M, Ngo T, Hett P, Kwong MC, Inbasekaran M, Brown JJ, Sonoyama T, Ito M, Seki S, Miyashita S (2009) Printable phosphorescent organic light emitting devices. J Soc Inf Display 17(2):167–172.  https://doi.org/10.1889/JSID17.2.167CrossRefGoogle Scholar
  43. 43.
    Schneller T, Waser R, Kosec M, Payne D (eds) (2013) Chemical solution deposition of functional oxide thin films. Springer, New York, pp 233–261CrossRefGoogle Scholar
  44. 44.
    Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW, Spiering AJH, Janssen RAJ, Meijer EW, Herwing P, de Leeuw DM (1999) Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401(6754):685–688.  https://doi.org/10.1038/44359CrossRefGoogle Scholar
  45. 45.
    Rogers J, Katz H (1999) Printable organic and polymeric semiconducting materials and devices. J Mater Chem 9(9):1895–1904.  https://doi.org/10.1039/A902652ECrossRefGoogle Scholar
  46. 46.
    Sirringhaus H, Kawase T, Friend RH, Shimoda T, Inbasekaran M, Wu W, Woo EP (2000) High-resolution inkjet printing of all-polymer transistor circuits. Science 290(5499):2123–2126.  https://doi.org/10.1126/science.290.5499.2123CrossRefGoogle Scholar
  47. 47.
    Chen J, Tee CK, Shtein M, Martin DC, Anthony J (2009) Controlled solution deposition and systematic study of charge-transport anisotropy in single crystal and single-crystal textured TIPS pentacene thin films. Org Electron 10(4):696–703.  https://doi.org/10.1016/j.orgel.2009.03.007CrossRefGoogle Scholar
  48. 48.
    Li H, Tee BC, Cha JJ, Cui Y, Chung JW, Lee SY, Bao Z (2012) High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals. J Am Chem Soc 134(5):2760–2765.  https://doi.org/10.1021/ja210430bCrossRefGoogle Scholar
  49. 49.
    Pierre A, Sadeghi M, Payne MM, Facchetti A, Anthony JE, Arias AC (2014) All-Printed flexible organic transistors enabled by surface tension-guided blade coating. Adv Mater 26(32):5722–5727.  https://doi.org/10.1002/adma.201401520CrossRefGoogle Scholar
  50. 50.
    Hoth CN, Schilinsky P, Choulis SA, Balasubramanian S, Brabe CJ (2013) Solution processed organic photovoltaics. In: Cantatore E (ed) Applications of organic and printed electronics. Springer, Boston, pp 27–56CrossRefGoogle Scholar
  51. 51.
    Gilleo K (1996) Polymer thick films. Van Nostrand Reinhold, New YorkGoogle Scholar
  52. 52.
    Pola J, Kupcik J, Durani SM, Khavaja EE, Masoudi HM, Bastl Z, Šubrt J (2003) Laser ablative structural modification of poly (ethylene-a lt-maleic anhydride). Chem Mater 15(20):3887–3893.  https://doi.org/10.1021/cm034262mCrossRefGoogle Scholar
  53. 53.
    Krebs FC (2009) Processing and preparation of polymer and organic solar cells. Sol Energ Mat Sol C 93(4):394–412.  https://doi.org/10.1016/j.solmat.2008.10.004CrossRefGoogle Scholar
  54. 54.
    Aernouts T, Vanlaeke P, Geens W, Poortmans J, Heremans P, Borghs S, Mertens R, Andriessen R, Leenders L (2004) Printable anodes for flexible organic solar cell modules. Thin Solid Films 451:22–25.  https://doi.org/10.1016/j.tsf.2003.11.038CrossRefGoogle Scholar
  55. 55.
    Krebs FC (2008) Air stable polymer photovoltaics based on a process free from vacuum steps and fullerenes. Sol Energ Mat Sol C 92(7):715–726CrossRefGoogle Scholar
  56. 56.
    Grimsdale AC, Mullen K (2005) The chemistry or organic nanomaterials. Angew Gchem Int Ed 44(35):5592–5629.  https://doi.org/10.1002/anie.200500805CrossRefGoogle Scholar
  57. 57.
    Rabe JP, Buchholz S (1991) Commensurability and mobility in two-dimensional molecular patterns on graphite. Science 253(5018):424–427.  https://doi.org/10.1126/science.253.5018.424CrossRefGoogle Scholar
  58. 58.
    Leclère P, Surin M, Brocorens P, Cavallini M, Biscarini F, Lazzaroni R (2006) Supramolecular assembly of conjugated polymers: from molecular engineering to solid-state properties. Mater Sci and Eng R 55(1):1–56.  https://doi.org/10.1016/j.mser.2006.12.001CrossRefGoogle Scholar
  59. 59.
    Büchele P, Morana M, Bagnis D, Tedde SF, Hartmann D, Fischer R, Schmidt O (2015) Space charge region effects in bidirectional illuminated P3HT: PCBM bulk heterojunction photodetectors. Organic Electron 22:29–34.  https://doi.org/10.1016/j.orgel.2015.03.027CrossRefGoogle Scholar
  60. 60.
    Azarova NA, Owen JW, McLellan CA, Grimminger MA, Chapman EK, Anthony JE, Jurchescu OD (2010) Fabrication of organic thin-film transistors by spray-deposition for low-cost, large-area electronics. Org Electron 11(12):1960–1965.  https://doi.org/10.1016/j.orgel.2010.09.008CrossRefGoogle Scholar
  61. 61.
    Treossi E, Liscio A, Feng X, Palermo V, Müllen K, Samorì P (2009) Large-area bi-component processing of organic semiconductors by spray deposition and spin coating with orthogonal solvents. Appl Phys A 95(1):15–20.  https://doi.org/10.1007/s00339-009-5123-4CrossRefGoogle Scholar
  62. 62.
    Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas JL (2007) Charge transport in organic semiconductors. Chem Rev 107:926–952.  https://doi.org/10.1021/cr050140xCrossRefGoogle Scholar
  63. 63.
    Shirakawa H, Louis EJ, MacDiarmid AG, Chiang CK, Heeger AJ (1997) Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. Chem Commun  https://doi.org/10.1039/c39770000578
  64. 64.
    Chinag CK, Fincher CR, Park YW Jr, Heeger AJ, Shirakawa H, Louis EJ (1978) Phys Rev Lett.  https://doi.org/10.1103/PhysRevLett.40.1472CrossRefGoogle Scholar
  65. 65.
    McGehe MD, Heeger AJ (2000) Semiconducting (conjugated) polymers as materials for solid-state Lasers. Adv Mater 12:1655–1668.  https://doi.org/10.1002/1521-4095(200011)12:22%3c1655:AID-ADMA1655%3e3.0.CO;2-2CrossRefGoogle Scholar
  66. 66.
    McCulloch I, Heeney M, Chabinyc ML, DeLongchamp D, Kline RJ, Cölle M, Duffy W, Fischer D, Gundlach D, Hamadami B, Hamilton R, Richter L, Salleo A, Shkunov M, Sparrowe D, Tierney S, Zang W (2009) Semiconducting Thienothiophene copolymers: design, synthesis, morphology, and performance in thin-film organic transistors. Adv Mater 21:1091–1109.  https://doi.org/10.1002/adma.200801650CrossRefGoogle Scholar
  67. 67.
    Zhao X, Zhan X (2011) Electron transporting semiconducting polymers in organic electronics. Chem Soc Rev 40:3728–3743.  https://doi.org/10.1039/C0CS00194ECrossRefGoogle Scholar
  68. 68.
    Chi HY, Hsu HW, Tung SH, Liu CL (2015) Nonvolatile organic field-effect transistors memory devices using supramolecular block copolymer/functional small molecule nanocomposite electret. ACS Appl Mater Interfaces 7:5663–5673.  https://doi.org/10.1021/acsami.5b00338CrossRefGoogle Scholar
  69. 69.
    Heeger AJ, Semiconducting and metallic polymers: the fourth generation of polymeric materials. Chin J Polym Sci 9(6):545–572Google Scholar
  70. 70.
    Reiss P, Couderc E, De Girolamo J, Pron A (2011) Conjugated polymers/semiconductor nanocrystals hybrid materials – preparation, electrical transport properties and applications. Nanoescale 3:446–489.  https://doi.org/10.1039/C0NR00403KCrossRefGoogle Scholar
  71. 71.
    Brütting W (2005) Physics of organic semiconductors. WILEY-VCH Verlag GmbH & Co, KGaA, Weinheim, GermanyCrossRefGoogle Scholar
  72. 72.
    Brédas JL, Beljonne D, Coropceaunu V, Cornil J (2004) Chem Rev 2004(104):4971CrossRefGoogle Scholar
  73. 73.
    Shirota Y, Kageyama H (2007) Charge carrier transporting molecular materials and their applications in devices. Chem Rev 107:953–1010.  https://doi.org/10.1021/cr050143+CrossRefGoogle Scholar
  74. 74.
    Murphy AR, Fréchet JMJ (2007) Organic semiconducting oligomers for use in thin film transistors. Chem Rev 107(4):1066–1096.  https://doi.org/10.1021/cr0501386CrossRefGoogle Scholar
  75. 75.
    Meyer Zu Heringdorf FJ, Reuter MC, Tromp RM (2001) Growth dynamics of pentacene thin films. Nature 412:517–520.  https://doi.org/10.1038/35087532CrossRefGoogle Scholar
  76. 76.
    Dimitrakopoulos CD, Malenfant PRL (2002) Organic thin film transistors for large area electronics. Adv Mater 14(2):99–117.  https://doi.org/10.1002/1521-4095(20020116)14:2%3c99:AID-ADMA99%3e3.0.CO;2-9CrossRefGoogle Scholar
  77. 77.
    Gao X, Hu Y (2014) Development of n-type organic semiconductors for thin film transistors: a viewpoint of molecular design. J Mater Chem C.  https://doi.org/10.1039/C3TC32046DCrossRefGoogle Scholar
  78. 78.
    Anthony JE, Facchetti A, Heeney M, Marder SR, Zhan X (2010) n-Type organic semiconductors in organic electronics. Adv Mater 22:3876–3892.  https://doi.org/10.1002/adma.200903628CrossRefGoogle Scholar
  79. 79.
    Sirringhaus H (2005) Device physics of solution-processed organic field-effect transistors. Adv Mater 17:2411–2425.  https://doi.org/10.1002/adma.200501152CrossRefGoogle Scholar
  80. 80.
    Kokil A, Yang K, Kumar J (2012) Techniques for characterization of charge carrier mobility in organic semiconductors. J Polym Sci Polym Phys 50:1130–1144.  https://doi.org/10.1002/polb.23103CrossRefGoogle Scholar
  81. 81.
    Costa JCS, Taveira RJS, Lima CFRAC, Mendes A, Santos LMNBF (2016) Optical band gaps of organic semiconductor materials. Opt Mater 58:51–60.  https://doi.org/10.1016/j.optmat.2016.03.041CrossRefGoogle Scholar
  82. 82.
    Thejo Kalyani N, Dhobleb SJ (2012) Organic light emitting diodes: Energy saving lighting technology—a review. Renew Sust Energ Rev 16:2696–2723.  https://doi.org/10.1016/j.rser.2012.02.021CrossRefGoogle Scholar
  83. 83.
    Scheblykin IG, Yartsev A, Pullerits T, Gulbinas V, Sundstro V (2007) Excited state and charge photogeneration dynamics in conjugated polymers. J Phys Chem B 111:6303–6321.  https://doi.org/10.1021/jp068864fCrossRefGoogle Scholar
  84. 84.
    Knupfer M (2003) Exciton binding energies in organic semiconductors. Appl Phys A 77(5):623–626.  https://doi.org/10.1007/s00339-003-2182-9CrossRefGoogle Scholar
  85. 85.
    Ruini A, Caldas MJ, Bussi G, Molinari E (2003) Solid state effects on exciton states and optical properties of PPV. Phys Rev Lett.  https://doi.org/10.1103/PhysRevLett.88.206403CrossRefGoogle Scholar
  86. 86.
    Conwell EM (1996) Definition of exciton binding energy for conducting polymers. Synth Met 83:101–102CrossRefGoogle Scholar
  87. 87.
    Ahmad S (2014) Organic semiconductors for device applications: current trends and future prospects. J Polym Eng 34(4):279–338CrossRefGoogle Scholar
  88. 88.
    Hatton RA, Miller AJ, Silva SRP (2008) Carbon nanotubes: a multi-functional material for organic electronics. J Mater Chem 18:1183–1192CrossRefGoogle Scholar
  89. 89.
    Horowitz G (1998) Organic field-effect transistors. Adv Mater 10:365–377CrossRefGoogle Scholar
  90. 90.
    Mei J, Diao Y, Appleton AL, Fang L, Bao Z (2013) Integrated materials design of organic semiconductors for field-effect transistors. J Am Chem Soc 135(18):6724–6746CrossRefGoogle Scholar
  91. 91.
    Watanabe M, Chang YJ, Liu SW, Chao TH, Goto K, Islam MM, Yuan CH, Tao YT, Shinmyozu T, Chow TJ (2012) The synthesis, crystal structure and charge transport properties of hexacene. Nat Chem 4:574–578CrossRefGoogle Scholar
  92. 92.
    Stewart Z (2013) Organic thin-film transistors and TIPS-pentacene. Honors Program Senior Capstone Collection. Paper 11. http://uknowledge.uky.edu/honprog/11 Accessed on May 2017
  93. 93.
    Yamashita Y (2009) Organic semiconductors for organic field-effect transistors. Sci Technol Adv Mater.  https://doi.org/10.1088/1468-6996/10/2/024313CrossRefGoogle Scholar
  94. 94.
    Torsi L, Magliulo M, Manoli K, Palazzo G (2013) Organic field-effect transistors sensors: a tutorial review. Chem Soc Rev 42:8612–8628CrossRefGoogle Scholar
  95. 95.
    Mahon JK, Zhou T, Forrest SR, Shwambera M, Meyer N (2012) Organic VPD shows promise for OLED volume production. Solid State Technol 45(7):131–139Google Scholar
  96. 96.
    Köhler A, Bässler H (2009) Triplet states in organic semiconductors. Mater Sci Eng, R 66:71–109.  https://doi.org/10.1016/j.mser.2009.09.001CrossRefGoogle Scholar
  97. 97.
    Geffroy B, le Roy P, Prat C (2006) Review Organic light-emitting diode (OLED) technology: materials, devices and display technologies. Polym Int 55:572–582.  https://doi.org/10.1002/pi.1974CrossRefGoogle Scholar
  98. 98.
    Braun D (2002) Semiconducting polymer LEDs. Mater Today 5:32–39.  https://doi.org/10.1016/S1369-7021(02),00637-5CrossRefGoogle Scholar
  99. 99.
    So F, Kondakov D (2010) Degradation mechanisms in small-molecule and polymer organic light-emitting diodes. Adv Mater 22:3762–3777CrossRefGoogle Scholar
  100. 100.
    Karzazi Y (2014) Organic light emitting diodes: devices and applications. J Mater Environ Sci 5:1–12Google Scholar
  101. 101.
    Kulkarni AP, Tonzola CJ, Babel A, Jenekhe SA (2004) Electron transport materials for organic light-emitting diodes. Chem Mater 16:4556–4573CrossRefGoogle Scholar
  102. 102.
    Cao W, Xue J (2014) Recent progress in organic photovoltaics: device architecture and optical design. Energy Environ Sci 7:2123–2144CrossRefGoogle Scholar
  103. 103.
    Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107(4):1324–1338CrossRefGoogle Scholar
  104. 104.
    Su YW, Lan SC, Wei KH (2012) Organic photovoltaics. Mater Today 15:554–562CrossRefGoogle Scholar
  105. 105.
    Liang Y, Wu Y, Feng D, Tsai ST, Son HJ, Li G, Yu L (2009) Development of new semiconducting polymers for high performance solar cells. J Am Chem Soc 131(1):56–57CrossRefGoogle Scholar
  106. 106.
    The University of Texas at El Paso (s.f.) Fabrication Techniques recovered on July 30, 2016. http://www.ece.utep.edu/research/cdte/Fabrication/index.htm
  107. 107.
    Institut für Materialphysik, Complex thin films/Pulsed laser deposition on Oct 2018. http://mp8.material.physik.unigoettingen.de/index.php?site=krebs_forschung&lang=en
  108. 108.
    Schmidt H, Mennig M (2018) The Sol-Gel Getaway, Wet Coating Technologies for Glass. Institut für Neue Materialien, Germany on Oct 2018. http://www.solgel.com/articles/nov00/coating.htm
  109. 109.
    Lin X, Kavalakkatt J, Lux-Steiner MCh, Ennaoui A (2015) Inkjet-printed Cu2ZnSn(S, Se)4 solar cells. Adv Sci 2:1500028. https://doi.org/10.1002/advs.201500028CrossRefGoogle Scholar
  110. 110.
    Perrin Manufacturing (s.f.) Silk Screen and Graphics Systems recovered on Oct 2018. https://www.perrinmfg.com/manufacturing#d3

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Josefina Alvarado Rivera
    • 1
    Email author
  • Amanda Carrillo Castillo
    • 2
  • María de la Luz Mota González
    • 3
  1. 1.Conacyt—Departamento de FίsicaUniversidad de SonoraHermosilloMexico
  2. 2.Instituto de Ingenierίa y TecnologiaUniversidad Autónoma de Ciudad JuárezChihuahuaMexico
  3. 3.Conacyt—Universidad Autónoma de Ciudad JuárezChihuahuaMexico

Personalised recommendations