Advertisement

Semiconductors pp 465-545 | Cite as

Other Miscellaneous Semiconductors and Related Binary, Ternary, and Quaternary Compounds

  • Dongguo Chen
  • Nuggehalli M. RavindraEmail author
Chapter

Abstract

The ability to tailor the energy gap of semiconductors, as a function of their applications has led to Bandgap Engineering. From a materials perspective, Bandgap Engineering has been made possible, to a large extent, by Semiconductor Alloys. The applications of these alloys include solar cells, solid-state lasers, detectors, Light Emitting Diodes (LEDs), and Opto Electronic Integrated Circuits (OEICs). In this chapter, we discuss the electronic, optical, and elastic/mechanical properties of various semiconductor alloys.

Keywords

Electronic properties Optical properties Elastic properties Mechanical properties Bandgap engineering Semiconductor alloys Band structure Ionicity Bowing parameter Spin-Orbit splitting 

References

  1. 1.
    Adachi S (2004) Handbook on physical properties of semiconductors, vol 2. Kluwer Academic, New YorkGoogle Scholar
  2. 2.
    Elyukhin VA, Sanchez-R VM, Elyukhina OV (2004) Self-assembling in AlxGa1−xNyAs1−y alloys. Appl Phys Lett 85(10):1704–1706CrossRefGoogle Scholar
  3. 3.
    Peter YY, Cardona, M (2005) Fundamentals of semiconductors: physics and materials properties, 3rd edn. Springer, Berlin, GermanyGoogle Scholar
  4. 4.
    Plummer JD, Deal MD, Griffin PB (2000) Silicon VLSI technology: fundamentals, practice and modeling. Prentice Hall, Upper Saddle River, New JerseyGoogle Scholar
  5. 5.
    Moshe H, Mastai Y (2013) Atomic layer deposition on self-assembled monolayers, chapter 3, materials science—Advanced topics, InTech, pp 63–184. http://dx.doi.org/10.5772/54814
  6. 6.
    Piotrowski A, Madejczyk P, Gawron W, Klos K, Pawluczyk J, Rutkowski J, Piotrowski J, Rogalski A (2007) Progress in MOCVD growth of HgCdTe heterostructures for uncooled infrared photodetectors. Infrared Phys Technol 49(3):173–182CrossRefGoogle Scholar
  7. 7.
    Ibach H, Lüth H (2003) Solid state physics, 3rd edn. Springer, Berlin, GermanyGoogle Scholar
  8. 8.
    Hicks HGB, Manley DF (1969) High purity GaAs by liquid phase epitaxy. Solid State Commun 7(20):1463–1465CrossRefGoogle Scholar
  9. 9.
    Moustakas TD, Pankove JI, Hamakawa Y (1992) Wide band gap semiconductors. Materials Research Society, Pittsburgh, PennsylvaniaGoogle Scholar
  10. 10.
    Neudeck PG (1995) Progress in silicon carbide semiconductor electronics technology. J Electron Mater 24(4):283–288CrossRefGoogle Scholar
  11. 11.
    Bhatnagar M, Baliga BJ (1993) Comparison of 6H–SiC, 3C–SiC, and Si for power devices. IEEE Trans Electron Devices 40(3):645–655CrossRefGoogle Scholar
  12. 12.
    Kung P, Yasan A, McClintock R, Darvish S, Mi K, Razeghi M (2002) Future of AlxGa1−xN materials and device technology for ultraviolet photodetectors. In: SPIE proceedings, vol 4650. pp 199–206Google Scholar
  13. 13.
    Saxler A, Mitchel WC, Kung P, Razeghi M (1999) Aluminum gallium nitride short-period superlattices doped with magnesium. Appl Phys Lett 74(14):2023–2025CrossRefGoogle Scholar
  14. 14.
    Suzuki M, Nishio J, Onomura M, Hongo C (1998) Doping characteristics and electrical properties of Mg-doped AlGaN grown by atmospheric-pressure MOCVD. J Cryst Growth 189–190:511–515CrossRefGoogle Scholar
  15. 15.
    Haase M, Qiu J, DePuydt JM, Cheng H (1991) Blue-green laser diodes. Appl Phys Lett 59(11):1272–1274CrossRefGoogle Scholar
  16. 16.
    Zeng L, Cavus A, Yang BX, Tamargo MC, Bambha N, Gray A, Semendy F (1997) Molecular beam epitaxial growth of lattice-matched ZnxCdyMg1−x−ySe quaternaries on InP substrates. J Cryst Growth 175–176(1):541–545CrossRefGoogle Scholar
  17. 17.
    Pavlidis D (2006) Wide-and narrow-bandgap semiconductor materials. Thema Forschung 2:38–41Google Scholar
  18. 18.
    Capper P, Garland J, Baker IM (2010) HgCdTe photovoltaic infrared detectors. In: Mercury cadmium telluride. Wiley Hoboken, New Jersey, pp 447–467Google Scholar
  19. 19.
    Capper P (2007) Narrow-bandgap II–VI semiconductors: growth. In: Springer handbook of electronic and photonic materials. Springer, Berlin, Germany, pp 303–324CrossRefGoogle Scholar
  20. 20.
    Tyagi VV, Rahim NAA, Rahim NA, Selvaraj JAL (2013) Progress in solar PV technology: Research and achievement. Renew Sustain Energy Rev 20:443–461CrossRefGoogle Scholar
  21. 21.
    Iles PA (2001) Evolution of space solar cells. Sol Energy Mater Sol Cells 68(1):1–13CrossRefGoogle Scholar
  22. 22.
    Britt J, Ferekides C (1993) Thin-film CdS/CdTe solar cell with 15.8% efficiency. Appl Phys Lett 62(22):2582–2851CrossRefGoogle Scholar
  23. 23.
    Hegedus SS, McCandless BE (2005) CdTe contacts for CdTe/CdS solar cells: effect of Cu thickness, surface preparation and recontacting on device performance and stability. Sol Energy Mater Sol Cells 88(1):75–95CrossRefGoogle Scholar
  24. 24.
    Repins I, Contreras MA, Egaas B, DeHart C, Scharf J, Perkins CL, To B, Noufi R (2008) 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor. Prog Photovoltaics Res Appl 16(3):235–239CrossRefGoogle Scholar
  25. 25.
    Doverspike K, Dwight K, Wold A (1990) Preparation and characterization of copper zinc germanium sulfide selenide (Cu2ZnGeS4-ySey). Chem Mater 2(2):194–197CrossRefGoogle Scholar
  26. 26.
    Guo Q, Hillhouse HW, Agrawal R (2009) Synthesis of Cu2ZnSnS4 nanocrystal ink and its use for solar cells. J Am Chem Soc 131(33):11672–11673CrossRefGoogle Scholar
  27. 27.
    Szabo A, Ostlund NS (1989) Modern quantum chemistry: introduction to advanced electronic structure theory. Dover, New YorkGoogle Scholar
  28. 28.
    Parr RG, Yang W (1989) Density-functional theory of atoms and molecules. Oxford University Press, Oxford, UKGoogle Scholar
  29. 29.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138CrossRefGoogle Scholar
  30. 30.
    Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45(23):13244–13249CrossRefGoogle Scholar
  31. 31.
    Payne MC, Teter MP, Allan DC, Arias TA, Joannopoulos JD (1992) Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev Mod Phys 64(4):1045–1097CrossRefGoogle Scholar
  32. 32.
    Hamann DR, Schlüter M, Chiang C (1979) Norm-conserving pseudopotentials. Phys Rev Lett 43(20):1494–1497CrossRefGoogle Scholar
  33. 33.
    Laasonen K, Pasquarello A, Car R, Lee C, Vanderbilt D (1993) Car-Parrinello molecular dynamics with Vanderbilt ultrasoft pseudopotentials. Phys Rev B 47(16):10142–10153CrossRefGoogle Scholar
  34. 34.
    Blöchl PE (1994) Projector augmented-wave method. Phys Rev B 50(24):17953–17979CrossRefGoogle Scholar
  35. 35.
    Greaves GN, Greer AL, Lakes RS, Rouxel T (2011) Poisson’s ratio and modern materials. Nat Mater 10(11):823–837CrossRefGoogle Scholar
  36. 36.
    Cohen ML (1985) Calculation of bulk moduli of diamond and zinc-blende solids. Physical Review B 32(12):7988–7991CrossRefGoogle Scholar
  37. 37.
    Cohen ML (1993) Predicting useful materials. Science 261(5119):307–308CrossRefGoogle Scholar
  38. 38.
    Kamran S, Chen K, Chen L (2008) Semiempirical formulae for elastic moduli and brittleness of diamondlike and zinc-blende covalent crystals. Phys Rev B 77(9):094109–094113CrossRefGoogle Scholar
  39. 39.
    Phillips JC (1973) Bonds and bands in semiconductors. Academic Press, New YorkCrossRefGoogle Scholar
  40. 40.
    Roundy D, Krenn CR, Cohen ML, Morris JW (1999) Ideal shear strengths of fcc aluminum and copper. Phys Rev Lett 82(13):2713–2716CrossRefGoogle Scholar
  41. 41.
    Martin RM (1970) Elastic properties of ZnS structure semiconductors. Phys Rev B 1(10):4005–4011CrossRefGoogle Scholar
  42. 42.
    Gao F, He J, Wu E, Liu S, Yu D, Li D, Zhang S, Tian Y (2003) Hardness of covalent crystals. Phys Rev Lett 91(1):015502–015505CrossRefGoogle Scholar
  43. 43.
    Chen D, Ravindra N (2013) Elastic properties of diamond and zincblende covalent crystals. Emerg Mater Res 2(1):58–63CrossRefGoogle Scholar
  44. 44.
    Lee DN (2003) Elastic properties of thin films of cubic system. Thin Solid Films 434(1):183–189CrossRefGoogle Scholar
  45. 45.
    Simmons G, Wang H (1971) Single crystal elastic constants and calculated aggregate properties: a handbook, 2nd edn. MIT Press, Cambridge, MassachusettsGoogle Scholar
  46. 46.
    Lee DH, Joannopoulos JD (1982) Simple scheme for deriving atomic force constants: application to SiC. Phys Rev Lett 48(26):1846–1849CrossRefGoogle Scholar
  47. 47.
    Lambrecht WRL, Segall B, Methfessel M, Schilfgaarde M (1991) Calculated elastic constants and deformation potentials of cubic SiC. Phys Rev B 44(8):3685–3694CrossRefGoogle Scholar
  48. 48.
    Azuhata T, Sota T, Suzuki K (1996) Elastic constants of III–V compound semiconductors: modification of keyes’ relation. J Phys Condens Matter 8(18):3111–3119CrossRefGoogle Scholar
  49. 49.
    Sherwin M, Drummond T (1991) Predicted elastic constants and critical layer thicknesses for cubic phase AlN, GaN, and InN on β-SiC. J Appl Phys 69(12):8423–8425CrossRefGoogle Scholar
  50. 50.
    Xiong Q, Duarte N, Tadigadapa S, Eklund PC (2006) Force-deflection spectroscopy: a new method to determine the Young’s modulus of nanofilaments. Nano Lett 6(9):1904–1909CrossRefGoogle Scholar
  51. 51.
    Deligoz EK, Colakoglu K, Ciftci Y (2006) Elastic, electronic, and lattice dynamical properties of CdS, CdSe, and CdTe. Physica B 373(1):124–130CrossRefGoogle Scholar
  52. 52.
    Alper T, Saunders G (1967) The elastic constants of mercury telluride. J Phys Chem Solids 28(9):1637–1642CrossRefGoogle Scholar
  53. 53.
    Chen D, Ravindra NM (2012) Pressure dependence of energy gap of III–V and II–VI ternary semiconductors. J Mater Sci 47(15):5735–5742CrossRefGoogle Scholar
  54. 54.
    De Bernabe A, Prieto C, Gonzalez L, Every AG (1999) Elastic constants of InxGa1−xAs and InxGa1−xP determined using surface acoustic waves. J Phys: Condens Matter 11(28):L323–L327Google Scholar
  55. 55.
    Yeh CY, Chen AB, Sher A (1991) Formation energies, bond lengths, and bulk moduli of ordered semiconductor alloys from tight-binding calculations. Phys Rev B 43(11):9138–9151CrossRefGoogle Scholar
  56. 56.
    Bouarissa N (2003) Compositional dependence of the elastic constants and the Poisson ratio of GaxIn1−xSb. Mater Sci Eng B 100(3):280–285CrossRefGoogle Scholar
  57. 57.
    Maheswaranathan P, Sladek RJ, Debska U (1985) Elastic constants and their pressure dependences in Cd1−xMnxTe with 0 < x < 0.52 and in Cd0.52Zn0.48Te. Phys Rev B 31(8):5212–5216Google Scholar
  58. 58.
    Brinck T, Murray JS, Politzer P (1993) Polarizability and volume. J Chem Phys 98(5):4305–4306CrossRefGoogle Scholar
  59. 59.
    Gilman JJ (2003) Electronic basis of the strength of materials. Cambridge University Press, Cambridge, UKGoogle Scholar
  60. 60.
    Hildebrand O, Kuebart W, Pilkuhn M (1980) Resonant enhancement of impact in Ga1−xAlxSb. Appl Phys Lett 37(9):801–803CrossRefGoogle Scholar
  61. 61.
    Kurtz SR, Biefeld RM, Dawson LR, Baucom KC, Howard AJ (1994) Midwave (4 μm) infrared lasers and light-emitting diodes with biaxially compressed InAsSb active regions. Appl Phys Lett 64(7):812–814CrossRefGoogle Scholar
  62. 62.
    Menna RJ, Capewell DR, Martinelli RU, York PK, Enstrom RE (1991) 3.06 μm InGaAsSb/InPSb diode lasers grown by organometallic vapor-phase epitaxy. Appl Phys Lett 59(17):2127–2129CrossRefGoogle Scholar
  63. 63.
    Bellaiche L, Wei SH, Zunger A (1996) Localization and percolation in semiconductor alloys: GaAsN versus GaAsP. Phys Rev B 54(24):17568–17576CrossRefGoogle Scholar
  64. 64.
    Bellaiche L, Wei SH, Zunger A (1997) Composition dependence of interband transition intensities in GaPN, GaAsN, and GaPAs alloys. Phys Rev B 56(16):10233–10240CrossRefGoogle Scholar
  65. 65.
    Wei SH, Zunger A (1996) Giant and composition-dependent optical bowing coefficient in GaAsN alloys. Phys Rev Lett 76(4):664–667CrossRefGoogle Scholar
  66. 66.
    Landau LD, Lifshits EM (1969) Statistical physics. Pergamon Press, Oxford, UKGoogle Scholar
  67. 67.
    Mbaye AA, Wood DM, Zunger A (1988) Stability of bulk and pseudomorphic epitaxial semiconductors and their alloys. Phys Rev B 37(6):3008–3024CrossRefGoogle Scholar
  68. 68.
    Yeo YC, Li MF, Chong TC, Yu PY (1997) Theoretical study of the energy-band structure of partially CuPt-ordered Ga0.5In0.5P. Phys Rev B 55(24):16414–16419CrossRefGoogle Scholar
  69. 69.
    Behet M, Stoll B, Heime K (1992) Lattice-matched growth of InPSb on InAs by low-pressure plasma MOVPE. J Cryst Growth 124(1):389–394CrossRefGoogle Scholar
  70. 70.
    Jou MJ, Cheng YT, Jen HR, Stringfellow GB (1988) Organometallic vapor phase epitaxial growth of a new semiconductor alloy: GaP1−xSbx. Appl Phys Lett 52(7):549–551CrossRefGoogle Scholar
  71. 71.
    Wei SH, Zunger A (1989) Band gaps and spin-orbit splitting of ordered and disordered AlxGa1−xAs and GaAsxSb1−x alloys. Phys Rev B 39(5):3279–3304CrossRefGoogle Scholar
  72. 72.
    Stringfellow GB (1989) Ordered structures and metastable alloys grown by OMVPE. J Cryst Growth 98(1):108–117CrossRefGoogle Scholar
  73. 73.
    Wei SH, Ferreira LG, Bernard JE, Zunger A (1990) Electronic properties of random alloys: Special quasirandom structures. Phys Rev B 42(15):9622–9649CrossRefGoogle Scholar
  74. 74.
    Bechstedt F, Del Sole R (1988) Analytical treatment of band-gap underestimates in the local-density approximation. Phys Rev B 38(11):7710–7716CrossRefGoogle Scholar
  75. 75.
    Wei SH, Zunger A (1990) Band-gap narrowing in ordered and disordered semiconductor alloys. Appl Phys Lett 56(7):662–664CrossRefGoogle Scholar
  76. 76.
    Fedders PA, Muller MW (1984) Mixing enthalpy and composition fluctuations in ternary III–V semiconductor alloys. J Phys Chem Solids 45(6):685–688CrossRefGoogle Scholar
  77. 77.
    Reihlen EH, Jou MJ, Jaw DH, Stringfellow GB (1990) Optical absorption and emission of GaP1−xSbx alloys. J Appl Phys 68(2):760–767CrossRefGoogle Scholar
  78. 78.
    Shimomura H, Anan T, Sugou S (1996) Growth of AlPSb and GaPSb on InP by gas-sthece molecular beam epitaxy. J Cryst Growth 162(3):121–125CrossRefGoogle Scholar
  79. 79.
    Jou MJ, Cheng YT, Jen HR, Stringfellow GB (1988) OMVPE growth of the new semiconductor alloys GaP1−xSbx and InP1−xSbx. J Cryst Growth 93(1):62–69CrossRefGoogle Scholar
  80. 80.
    Reihlen EH, Jou MJ, Fang ZM, Stringfellow GB (1990) Optical absorption and emission of InP1−xSbx alloys. J Appl Phys 68(9):4604–4609CrossRefGoogle Scholar
  81. 81.
    Aramoto T, Kumazawa S, Higuchi H, Arita T, Shibutani S, Nishio T, Nakajima J, Tsuji M, Hanafusa A, Hibino T, Omira K, Ohyama H, Murozono M (1997) 16.0% efficient thin-film CdS/CdTe solar cells. Jpn J Appl Phys 36(10):6304–6305CrossRefGoogle Scholar
  82. 82.
    Wang D, Hou Z, Bai Z (2011) Study of interdiffusion reaction at the CdS/CdTe interface. J Mater Res 26(05):697–705CrossRefGoogle Scholar
  83. 83.
    Fischer A, Anthony L, Compaan AD (1998) Raman analysis of short-range clustering in laser-deposited CdSxTe1−x films. Appl Phys Lett 72(20):2559–2561CrossRefGoogle Scholar
  84. 84.
    Ebina A, Yamamoto M, Takahashi T (1972) Reflectivity of ZnSexTe1−x single crystals. Phys Rev B 6(10):3786–3791CrossRefGoogle Scholar
  85. 85.
    Lange H, Donecker J, Friedrich H (1976) Electroreflectance and wavelength modulation study of the direct and indirect fundamental transition region of In1−xGaxP. Physica Status Solidi (B) 73(2):633–639CrossRefGoogle Scholar
  86. 86.
    Chen D, Ravindra NM (2013) Structural, thermodynamic and electronic properties of GaPxSb1−x and InPxSb1−x alloys. Emerg Mater Res 2(2):109–113CrossRefGoogle Scholar
  87. 87.
    Hopfield JJ (1960) Fine structure in the optical absorption edge of anisotropic crystals. J Phys Chem Solids 15(1):97–107CrossRefGoogle Scholar
  88. 88.
    Zakharov O, Rubio A, Blasé X, Cohen ML, Louie SG (1994) Quasiparticle band structures of six II–VI compounds: ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe. Phys Rev B 50(15):10780–10787CrossRefGoogle Scholar
  89. 89.
    Chadi DJ (1977) Spin-orbit splitting in crystalline and compositionally disordered semiconductors. Phys Rev B 16(2):790–796CrossRefGoogle Scholar
  90. 90.
    Wei SH, Zunger A (1989) Negative spin-orbit bowing in semiconductor alloys. Phys Rev B 39(9):6279–6282CrossRefGoogle Scholar
  91. 91.
    Carrier P, Wei SH (2004) Calculated spin-orbit splitting of all diamondlike and zinc-blende semiconductors: Effects of p1/2 local orbitals and chemical trends. Phys Rev B 70(3):035212–035212-9Google Scholar
  92. 92.
    Van Vechten JA, Berolo O, Woolley JC (1972) Spin-orbit splitting in compositionally disordered semiconductors. Phys Rev Lett 29(20):1400–1403CrossRefGoogle Scholar
  93. 93.
    Wei K, Pollak FH, Freeouf JL, Shvydka D, Compaan AD (1999) Optical properties of CdTe1−xSx(0≤x≤1): experiment and modeling. J Appl Phys 85(10):7418–7425CrossRefGoogle Scholar
  94. 94.
    Lane DW (2006) A review of the optical band gap of thin film CdSxTe1−x. Sol Energy Mater Sol Cells 90(9):1169–1175CrossRefGoogle Scholar
  95. 95.
    Ohata K, Saraie J, Tanaka T (1973) Optical energy gap of the mixed crystal CdSxTe1−x. Jpn J Appl Phys 12(10):1641–1642CrossRefGoogle Scholar
  96. 96.
    Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118(18):8207–8215CrossRefGoogle Scholar
  97. 97.
    Heyd J, Scuseria GE, Ernzerhof M (2003) Erratum: Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207. J Chem Phys 124(21):219906–219906-1Google Scholar
  98. 98.
    Wei SH, Zhang SB, Zunger A (2000) First-principles calculation of band offsets, optical bowings, and defects in CdS, CdSe, CdTe, and their alloys. J Appl Phys 87(3):1304–1311CrossRefGoogle Scholar
  99. 99.
    Gomyo A, Suzuki T, Kobayashi K, Kawata S, Hino I, Yuasa T (1987) Evidence for the existence of an ordered state in Ga0.5In0.5P grown by metalorganic vapor phase epitaxy and its relation to band gap energy. Appl Phys Lett 50(11):673–675CrossRefGoogle Scholar
  100. 100.
    Kuan TS, Kuech TF, Wang WI, Wilkie EL (1985) Long-range order in AlxGa1−xAs. Phys Rev Lett 54(3):201–204CrossRefGoogle Scholar
  101. 101.
    Kurtz SR (1993) Anomalous electroreflectance spectrum of spontaneously ordered Ga0.5In0.5P. J Appl Phys 74(6):4130–4135CrossRefGoogle Scholar
  102. 102.
    Ruvimov S, Werner P, Scheerschmidt K, Gosele U, Heydenreich J, Richter U, Ledentsov NN, Grundmann M, Bimberg D, Ustinov VM, Yu Egorov A, Kopev PS, Alferov ZI (1995) Structural characterization of (In, Ga)As quantum dots in a GaAs matrix. Phys Rev B 51(20):14766–14769CrossRefGoogle Scholar
  103. 103.
    Wu C, Feng Z, Chang W, Yang C, Lin H (2012) Bond lengths and lattice structure of InP0.52Sb0.48 grown on GaAs. Appl Phy Lett 101(9):091902–091902-4Google Scholar
  104. 104.
    Zhong Z, Li JH, Kulik J, Chow PC, Norman AG, Mascarenhas A, Bai J, Golding TD, Moss SC (2001) Quadruple-period ordering along [110] in a GaAs0.87Sb0.13 alloy. Phys Rev B 63(3):033314Google Scholar
  105. 105.
    Franceschetti A, Zunger A (1994) Pressure dependence of optical transitions in ordered GaP/InP superlattices. Appl Phys Lett 65(23):2990–2992CrossRefGoogle Scholar
  106. 106.
    Wei SH, Laks DB, Zunger A (1993) Dependence of the optical properties of semiconductor alloys on the degree of long-range order. Appl Phys Lett 62(16):1937–1939CrossRefGoogle Scholar
  107. 107.
    Wei SH, Zunger A (1993) Erratum: Dependence of the optical properties of semiconductor alloys on the degree of long-range order. Appl Phys Lett 62:1937. Appl Phys Lett 63(9):1292Google Scholar
  108. 108.
    Wei SH, Zunger A (1998) Calculated natural band offsets of all II–VI and III–V semiconductors: chemical trends and the role of cation d orbitals. Appl Phys Lett 72(16):2011–2013CrossRefGoogle Scholar
  109. 109.
    Baxter CS, Broom RF, Stobbs WM (1990) The characterization of the ordering of MOVPE grown III–V alloys using transmission electron microscopy. Surf Sci 228(1):102–107CrossRefGoogle Scholar
  110. 110.
    Baxter CS, Stobbs WM, Wilkie JH (1991) The morphology of ordered structures in III–V alloys: inferences from a TEM study. J Cryst Growth 112(2):373–385CrossRefGoogle Scholar
  111. 111.
    Morita E, Ikeda M, Kumagai O, Kanedo K (1988) Transmission electron microscopic study of the ordered structure in GaInP/GaAs epitaxially grown by metalorganic chemical vapor deposition. Appl Phys Lett 53(22):2164–2166CrossRefGoogle Scholar
  112. 112.
    Suzuki T, Gomyo A, Iijima S, Kobayashi K, Kawata S, Hino I, Yuasa T (1988) Band-gap energy anomaly and sublattice ordering in GaInP and AlGalnP grown by metalorganic vapor phase epitaxy. Jpn J Appl Phys 27(11):2098–2106CrossRefGoogle Scholar
  113. 113.
    Kondow M, Kakibayashi H, Minagawa S, Inoue Y, Nishino T, Hamakawa Y (1988) Influence of growth temperature on crystalline structure in Ga0.5In0.5P grown by organometallic vapor phase epitaxy. Appl Phys Lett 53(21):2053–2055CrossRefGoogle Scholar
  114. 114.
    Nishino T, Inoue Y, Hamakawa Y, Kondow M, Minagawa S (1988) Electroreflectance study of ordered Ga0.5In0.5P alloys grown on GaAs by organometallic vapor phase epitaxy. Appl Phys Lett 53(7):583–585CrossRefGoogle Scholar
  115. 115.
    Lee K, Lee S, Chang KJ (1995) Optical properties of ordered In0.5Ga0.5P alloys. Phys Rev B 52(22):15862–15866Google Scholar
  116. 116.
    Nee TW, Green AK (1990) Optical properties of InGaAs lattice-matched to InP. J Appl Phys 68(10):5314–5317CrossRefGoogle Scholar
  117. 117.
    Hakki BW, Jayaraman A, Kim CK (1970) Band structure of InGaP from pressure experiments. J Appl Phys 41(13):5291–5296CrossRefGoogle Scholar
  118. 118.
    Chen J, Sites JR, Spain IL, Hafich MJ, Robinson GY (1991) Band offset of GaAs/In0.48Ga0.52P measured under hydrostatic pressure. Appl Phys Lett 58(7):744–746CrossRefGoogle Scholar
  119. 119.
    Hill R (1974) Energy-gap variations in semiconductor alloys. J Phys C: Solid State Phys 7(3):521–526CrossRefGoogle Scholar
  120. 120.
    Hill R, Pitt GD (1975) The pressure and temperature dependence of electron energy-gaps in semiconductor alloys. Solid State Commun 17(6):739–742CrossRefGoogle Scholar
  121. 121.
    Van Vechten JA (1969) Quantum dielectric theory of electronegativity in covalent systems. I. Electronic dielectric constant. Phys Rev 182(3):891–905CrossRefGoogle Scholar
  122. 122.
    Van Vechten JA (1969) Quantum dielectric theory of electronegativity in covalent systems. II. Ionization potentials and interband transition energies. Phys Rev 187(3):1007–1020Google Scholar
  123. 123.
    Camphausen DL, Connell GAN, Paul W (1971) Calculation of energy-band pressure coefficients from the dielectric theory of the chemical bond. Phys Rev Lett 26(4):184–188CrossRefGoogle Scholar
  124. 124.
    Van Vechten JA, Bergstresser TK (1970) Electronic structures of semiconductor alloys. Phys Rev B 1(8):3351–3358CrossRefGoogle Scholar
  125. 125.
    Vurgaftman I, Meyer JR, Mohan LR (2001) Band parameters for III–V compound semiconductors and their alloys. J Appl Phys 89(11):5815–5875CrossRefGoogle Scholar
  126. 126.
    Adachi S (2009) Properties of semiconductor alloys: group-IV, III–V and II–VI semiconductors, vol 28. Wiley, Hoboken, New JerseyGoogle Scholar
  127. 127.
    Nicklas JW, Wilkins JW (2010), Accurate ab initio predictions of III–V direct-indirect band gap crossovers. Appl Phys Lett 97(9):091902–091902-3CrossRefGoogle Scholar
  128. 128.
    Tsang WT, Chiu TH, Chu SNG, Ditzenberger JA (1985) GaSbAs/AlGaSbAs superlattice lattice matched to InP prepared by molecular beam epitaxy. Appl Phys Lett 46(7):659–661CrossRefGoogle Scholar
  129. 129.
    Teissier R, Sicault D, Harmand JC, Ungaro G, Le Roux G, Largeau L (2001) Temperature-dependent valence band offset and band-gap energies of pseudomorphic GaAsSb on GaAs. J Appl Phys 89(10):5473–5477CrossRefGoogle Scholar
  130. 130.
    Drews D, Schneider A, Werninghaus T, Behres A, Heuken M, Heime K, Zahn DRT (1998) Characterization of MOVPE grown InPSbInAs heterostructures. Appl Surf Sci 123–124:746–750CrossRefGoogle Scholar
  131. 131.
    Alibert C, Bordure G, Laugier A, Chevallier J (1972) Electroreflectance and band structure of GaxIn1−xP alloys. Phys Rev B 6(4):1301–1310CrossRefGoogle Scholar
  132. 132.
    Uchida K, Yu PY, Noto N, Weber ER (1994) Pressure-induced Γ-X crossover in the conduction band of ordered and disordered GaInP alloys. Appl Phys Lett 64(21):2858–2860CrossRefGoogle Scholar
  133. 133.
    Alavi K, Aggarwal RL, Groves SH (1980) Interband magnetoabsorption of In0.53Ga0.47As. Phys Rev B 21(3):1311–1315Google Scholar
  134. 134.
    Lambkin JD, Dunstan DJ (1988) The hydrostatic pressure dependence of the band-edge photoluminescence of GaInAs. Solid State Commun 67(8):827–830CrossRefGoogle Scholar
  135. 135.
    Desplanque L, Vignaud D, Godey S, Cadio E, Plissard S, Wallart X, Liu P, Sellier H (2010) Electronic properties of the high electron mobility Al0.56In0.44Sb/Ga0.5In0.5Sb heterostructure. J Appl Phys 108(4):043704–043704-6Google Scholar
  136. 136.
    Bouarissa N, Atheag H (1995) Band structure calculations of InxGa1−xSb under pressure. Infrared Phys Technol 36(6):973–980CrossRefGoogle Scholar
  137. 137.
    Shan W, Ager JW, Yu KM, Walukiewicz W, Haller EE, Martin MC, Mckinney WR, Yang W (1999) Dependence of the fundamental band gap of AlxGa1−xN on alloy composition and pressure. J Appl Phys 85(12):8505–8507CrossRefGoogle Scholar
  138. 138.
    Dridi Z, Bouhafs B, Ruterana P (2002) Pressure dependence of energy band gaps for AlxGa1−xN, InxGa1−xN and InxAl1−xN. New J Phys 4(1):94.1–94.15Google Scholar
  139. 139.
    Chen A, Woodall JM (2009) Photodiode characteristics and band alignment parameters of epitaxial Al0.5Ga0.5P. Appl Phy Lett 94(2):021102–021102-3Google Scholar
  140. 140.
    Bosio C, Stachli JL, Guzzi M, Burri G, Logan RA (1988) Direct energy gap dependence on Al concentration in AlxGa1−xAs. Phys Rev B 38(5):3263–3268CrossRefGoogle Scholar
  141. 141.
    Wei SH, Zunger A (1999) Predicted band gap pressure coefficients of all diamond and zinc-blende semiconductors: the chemical trends. Phys Rev B 60(8):5404–5411CrossRefGoogle Scholar
  142. 142.
    Adachi S (1994) GaAs and related materials: bulk semiconducting and superlattice properties. World Scientific, SingaporeGoogle Scholar
  143. 143.
    Tamargo MC (2002) II–VI Semiconductor materials and their applications. Taylor & Francis, New YorkGoogle Scholar
  144. 144.
    Yang XD, Xu ZY, Sun Z, Sun BQ, Li GH, Sou IK, Ge WK (2005) Recombination kinetics of Te isoelectronic centers in ZnSTe. Appl Phys Lett 86(5):052107–052107-3CrossRefGoogle Scholar
  145. 145.
    Seong MJ, Alawadhi H, Miotkowski I, Ramdas AK, Miotkowska S (1999) The anomalous variation of band gap with alloy composition: cation vs anion substitution in ZnTe. Solid State Commun 112(6):329–334CrossRefGoogle Scholar
  146. 146.
    Wu J, Walukiewicz W, Yu KM, Shan W, Ager, JW III, Haller, WK, Miotkowski I, Ramdas AK, Su CH (2003) Composition dependence of the hydrostatic pressure coefficients of the bandgap of ZnSe1−xTex alloys. Phys Rev B 68(3):033206–033206-4Google Scholar
  147. 147.
    Murali KR, Thilagavathy K, Vasantha S, Gopalakrishnan P, Oommen PR (2010) Photoelectrochemical properties of CdSxSe1−x films. Sol Energy 84(4):722–729CrossRefGoogle Scholar
  148. 148.
    Azhniuk YM, Lopushansky VV, Hutych YI, Prymak MV, Gomonnai AV, Zahn DRT (2011) Precipitates of selenium and tellurium in II–VI nanocrystal-doped glass probed by Raman scattering. Physica Status Solidi (b) 248(3):674–679CrossRefGoogle Scholar
  149. 149.
    Zerroug S, Ali Sahraoui F, Bouarissa N (2007) Structural parameters and pressure coefficients for CdSxTe1−x: FP-LAPW calculations. Eur Phys J B, 57(1):9–14CrossRefGoogle Scholar
  150. 150.
    Muthukumarasamy N, Balasundaraprabhu R, Jayakumar S, Kannan MD (2007) Photoconductive properties of hot wall deposited CdSe0.6Te0.4 thin films. Mater Sci Eng B 137(1–3):1–4CrossRefGoogle Scholar
  151. 151.
    Beliveau A, Carlone C (1989) Pressure study of the direct band gap of ZnxCd1−xS mixed crystals. Semicond Sci Technol 4(4):277–279CrossRefGoogle Scholar
  152. 152.
    Olego DJ, Faurie JP, Sivananthan S, Raccah PM (1985) Optoelectronic properties of Cd1−xZnxTe films grown by molecular beam epitaxy on GaAs substrates. Appl Phys Lett 47(11):1172–1174CrossRefGoogle Scholar
  153. 153.
    Madelung O, Von Der Osten W, Rossler U (1986) Landolt-Bornstein: numerical data and functional relationships in science and technology. Springer, Berlin, GermanyGoogle Scholar
  154. 154.
    Reimann K, Haselhoff M, St. Rubenacke S, Steube M (1996) Determination of the pressure dependence of band-structure parameters by two-photon spectroscopy. Physica Status Solidi (b) 198(1):71–80CrossRefGoogle Scholar
  155. 155.
    Zhao Z, Zeng J, Ding Z, Wang X, Hou J (2007) High pressure photoluminescence of CdZnSe quantum dots: Alloying effect. J Appl Phys 102(5):053509–053509-3CrossRefGoogle Scholar
  156. 156.
    Gil B, Dunstan DJ (1991) Tellurium-based II–VI compound semiconductors and heterostructures under strain. Semicond Sci Technol 6(6):428–438CrossRefGoogle Scholar
  157. 157.
    Gonzalez J, Perez FV, Moya E, Chervin JC (1995) Hydrostatic pressure dependence of the energy gaps of CdTe in the zinc-blende and rocksalt phases. J Phys Chem Solids 56(3–4):335–340CrossRefGoogle Scholar
  158. 158.
    Fang ZL, Li GH, Liu NZ, Zhu ZM, Han HX, Ding K, Ge WK, Sou IK (2002) Photoluminescence from ZnS1−xTex alloys under hydrostatic pressure. Phys Rev B 66(8): 085203–085203-6Google Scholar
  159. 159.
    Prins AD, Dunstan DJ, Lambkin JD, O’Reilly EP, Adams AR, Pritchard R, Truscott WS, Singer KE (1993) Evidence of type-I band offsets in strained GaAs1−xSbx/GaAs quantum wells from high-pressure photoluminescence. Phys Rev B 47(4):2191–2196CrossRefGoogle Scholar
  160. 160.
    Teisseyre H, Kozankiewicz B, Leszczynski M, Grzegory I, Suski T, Bockowski M, Porowski S, Pakula K, Mensz PM, Bhat IB (1996) Pressure and time-resolved photoluminescence studies of Mg-doped and undoped GaN. Physica Status Solidi (b) 198(1):235–241CrossRefGoogle Scholar
  161. 161.
    Cardona M (1963) Band parameters of semiconductors with zincblende, wurtzite, and germanium structure. J Phys Chem Solids 24(12):1543–1555CrossRefGoogle Scholar
  162. 162.
    Shan W, Walukiewicz W, Ager JW, Yu KM, Wu J, Haller EE (2004) Pressure dependence of the fundamental band-gap energy of CdSe. Appl Phys Lett 84(1):67–69CrossRefGoogle Scholar
  163. 163.
    Yu PY, Cardona M (1970) Temperature coefficient of the refractive index of diamond- and zincblende-type semiconductors. Phys Rev B 2(8):3193–3197CrossRefGoogle Scholar
  164. 164.
    Fernandes PA, Salomé PMP, Da Cunha AF (2011) Study of polycrystalline Cu2ZnSnS4 films by Raman scattering. J Alloy Compd 509(28):7600–7606CrossRefGoogle Scholar
  165. 165.
    Katagiri H, Jimbo K, Yamada S, Kamimura T, Maw WS, Fukano T, Ito T, Motohiro T (2008) Enhanced conversion efficiencies of Cu2ZnSnS4-based thin film solar cells by using preferential etching technique. Appl Phys Express 1(4):041201–041202CrossRefGoogle Scholar
  166. 166.
    Moholkar AV, Shinde SS, Babar AR, Sim K, Lee HK, Rajpure KY, Patil PS, Bhosale CH, Kim JH (2011) Synthesis and characterization of Cu2ZnSnS4 thin films grown by PLD: solar cells. J Alloy Compd 509(27):7439–7446CrossRefGoogle Scholar
  167. 167.
    Schorr S, Hoebler HJ, Tovar M (2007) A neutron diffraction study of the stannite-kesterite solid solution series. Eur J Mineral 19(1):65–73CrossRefGoogle Scholar
  168. 168.
    Shavel A, Arbiol J, Cabot A (2010) Synthesis of quaternary chalcogenide nanocrystals: Stannite Cu2ZnxSnySe1+x+2y. J Am Chem Soc 132(13):4514–4515CrossRefGoogle Scholar
  169. 169.
    Liu ML, Chen IW, Huang FQ, Chen LD (2009) Improved thermoelectric properties of Cu-doped quaternary chalcogenides of Cu2CdSnSe4. Adv Mater 21(37):3808–3812CrossRefGoogle Scholar
  170. 170.
    Sevik C, Çağın T (2010) Ab initio study of thermoelectric transport properties of pure and doped quaternary compounds. Phys Rev B 82(4):045202–045202-6Google Scholar
  171. 171.
    Todorov TK, Reuter KB, Mitzi DB (2010) High-efficiency solar cell with earth-abundant liquid-processed absorber. Adv Mater 22(20):E156–E159CrossRefGoogle Scholar
  172. 172.
    Matsushita H, Ichikawa T, Katsui A (2005) Structural, thermodynamical and optical properties of Cu2–II–IV–VI4 quaternary compounds. J Mater Sci 40(8):2003–2005CrossRefGoogle Scholar
  173. 173.
    Matsushita H, Maeda T, Katsui A, Takizawa T (2000) Thermal analysis and synthesis from the melts of Cu-based quaternary compounds Cu–III–IV–VI4 and Cu2–II–IV–VI4 (II=Zn, Cd; III=Ga, In; IV=Ge, Sn; VI=Se). J Cryst Growth 208(1–4):416–422CrossRefGoogle Scholar
  174. 174.
    Parasyuk OV, Olekseyuk ID, Piskach LV (2005) X-ray powder diffraction refinement of Cu2ZnGeTe4 structure and phase diagram of the Cu2GeTe3–ZnTe system. J Alloy Compd 397(1):169–172CrossRefGoogle Scholar
  175. 175.
    Parasyuk OV, Piskach LV, Romanyuk YE, Olekseyuk ID, Zaremba VI, Pekhnyo VI (2005) Phase relations in the quasi-binary Cu2GeS3-ZnS and quasi-ternary Cu2S-Zn(Cd)S-GeS2 systems and crystal structure of Cu2ZnGeS4. J Alloy Compd 397(1–2):85–94CrossRefGoogle Scholar
  176. 176.
    Yao GQ, Shen HS, Honig ED, Kershaw R, Dwight K, Wold A (1987) Preparation and characterization of the quaternary chalcogenides Cu2B(II)C(IV)X4 [B(II)=Zn, Cd; C(IV)=Si, Ge; X=S, Se]. Solid State Ionics 24(3):249–252CrossRefGoogle Scholar
  177. 177.
    Schleich DM, Wold A (1977) Optical and electrical properties of quarternary chalcogenides. Mater Res Bull 12(2):111–114CrossRefGoogle Scholar
  178. 178.
    León M, Levcenko S, Serna R, Gurieva G, Nateprov A, Merino JM, Friedrich EJ, Fillat U, Schorr S, Arushanov E (2010) Optical constants of Cu2ZnGeS4 bulk crystals. J Appl Phys 108(9):093502–093502-5CrossRefGoogle Scholar
  179. 179.
    Chen S, Gong XG, Walsh A, Wei SH (2009) Electronic structure and stability of quaternary chalcogenide semiconductors derived from cation cross-substitution of II–VI and I–III–VI2 compounds. Phys Re B 79(16):165211–1652211-10Google Scholar
  180. 180.
    Zhang Y, Sun X, Zhang P, Yuan X, Huang F, Zhang W (2012) Structural properties and quasiparticle band structures of Cu-based quaternary semiconductors for photovoltaic applications. J Appl Phys 111(6):063709–063709-6CrossRefGoogle Scholar
  181. 181.
    Persson C (2010) Electronic and optical properties of Cu2ZnSnS4 and Cu2ZnSnSe4. J Appl Phy 107(5):053710–053710-8Google Scholar
  182. 182.
    Lamsal C, Chen D, Ravindra NM (2012) Optical and electronic properties of AlN, GaN and InN: An Analysis. In: Supplemental proceedings: materials processing and interfaces, vol 1. pp 701–713CrossRefGoogle Scholar
  183. 183.
    Wang X, Li J, Zhao Z, Huang S, Xie W (2012) Crystal structure and electronic structure of quaternary semiconductors Cu2ZnTiSe4 and Cu2ZnTiS4 for solar cell absorber. J Appl Phys 112(2): 023701–023701-4Google Scholar
  184. 184.
    Zhang X, Rao D, Lu R, Deng K, Chen D (2015) First-principles study on electronic and optical properties of Cu2ZnSiV I4 (VI=S, Se, and Te) quaternary semiconductors. AIP Adv 5:057111.  https://doi.org/10.1063/1.4920936CrossRefGoogle Scholar
  185. 185.
    Ravindra NM, Ganapathy P, Choi J (2007) Energy gap—Refractive index relations in semiconductors—An overview. Infrared Phys Technol 50:21–29CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.New Jersey Institute of TechnologyNewarkUSA

Personalised recommendations