Advertisement

Semiconductors pp 333-396 | Cite as

Transition Metal Dichalcogenides Properties and Applications

  • Nuggehalli M. RavindraEmail author
  • Weitao Tang
  • Sushant Rassay
Chapter

Abstract

An overview of the physical, structural, electronic, optical, and electrical properties of Transition Metal Dichalcogenides (TMDCs) and their applications are presented in this chapter. In particular, the sulfides and selenides of molybdenum and tungsten, i.e., MoS2, WS2, MoSe2, and WSe2, are considered. The temperature dependence of the energy gap and simulation of the optical properties of these materials on a variety of substrates are emphasized.

Keywords

Two-Dimensional materials Graphene Transition metal dichalcogenides MoS2 WS2 MoSe2 WSe2 Structure Electronic properties Electrical properties Optical properties 

References

  1. 1.
  2. 2.
  3. 3.
  4. 4.
  5. 5.
    npj 2D Materials and Applications, https://www.nature.com/npj2dmaterials
  6. 6.
  7. 7.
  8. 8.
    Focus issue: porous carbon and carbonaceous materials for energy conversion and storage. J Mater Res 33(9) (2018)Google Scholar
  9. 9.
    Cao T, Wang G, Han W, Ye H, Zhu C, Shi J et al (2012) Valley-selective circular dichroism of monolayer molybdenum disulphide. Nat Commun 3:887CrossRefGoogle Scholar
  10. 10.
    Wang X, Xia F (2015) Van der Waals heterostructures: stacked 2D materials shed light. Nat Mater 14:264–265CrossRefGoogle Scholar
  11. 11.
    Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7:699–712CrossRefGoogle Scholar
  12. 12.
    Wang Z, Su Q, Yin G, Shi J, Deng H, Guan J et al (2014) Structure and electronic properties of transition metal dichalcogenide MX2 (M = Mo, W, Nb; X = S, Se) monolayers with grain boundaries. Mater Chem Phys 147:1068–1073CrossRefGoogle Scholar
  13. 13.
    Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105:136805CrossRefGoogle Scholar
  14. 14.
    Li H, Wu J, Yin Z, Zhang H (2014) Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 nanosheets. Acc Chem Res 47:1067–1075CrossRefGoogle Scholar
  15. 15.
    Amin B, Kaloni TP, Schwingenschlögl U (2014) Strain engineering of WS2, WSe2, and WTe2. RSC Adv 4:34561–34565CrossRefGoogle Scholar
  16. 16.
    Schönfeld B, Huang J, Moss S (1983) Anisotropic mean-square displacements (MSD) in single-crystals of 2H-and 3R-MoS2. Acta Crystallogr B 39:404–407CrossRefGoogle Scholar
  17. 17.
    Haynes WM (2017) CRC handbook of chemistry and physics. CRC Press, Boca RatonGoogle Scholar
  18. 18.
    Wilson J, Yoffe A (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193–335CrossRefGoogle Scholar
  19. 20.
    Ye M, Winslow D, Zhang D, Pandey R, Yap YK (2015) Recent advancement on the optical properties of two-dimensional molybdenum disulfide (MoS2) thin films. Photonics 2(1):288–307CrossRefGoogle Scholar
  20. 21.
    Kumar A, Ahluwalia P (2012) Electronic structure of transition metal dichalcogenides monolayers 1H-MX2 (M = Mo, W; X = S, Se, Te) from ab-initio theory: new direct band gap semiconductors. Eur Phys J B 85:1–7CrossRefGoogle Scholar
  21. 22.
    Ravindra NM, Srivastava VK (1979) Temperature dependence of the energy gap in semiconductors. J Phys Chem Solids 40:791–793CrossRefGoogle Scholar
  22. 23.
    Van Zeghbroeck B (2004) Principles of semiconductor devices. Colarado University, DenverGoogle Scholar
  23. 24.
    O’Donnell K, Chen X (1991) Temperature dependence of semiconductor band gaps. Appl Phys Lett 58:2924–2926CrossRefGoogle Scholar
  24. 25.
    Varshni YP (1967) Temperature dependence of the energy gap in semiconductors. Physica 34(1):149–154CrossRefGoogle Scholar
  25. 26.
    Tongay S, Zhou J, Ataca C, Lo K, Matthews TS, Li J et al (2012) Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett 12:5576–5580CrossRefGoogle Scholar
  26. 27.
    He Z, Sheng Y, Rong Y, Lee G-D, Li J, Warner JH (2015) Layer-dependent modulation of tungsten disulfide photoluminescence by lateral electric fields. ACS Nano 9:2740–2748CrossRefGoogle Scholar
  27. 28.
    Li Y, Chernikov A, Zhang X, Rigosi A, Hill HM, van der Zande AM et al (2014) Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys Rev B 90:205422CrossRefGoogle Scholar
  28. 29.
    Rassay SS, Tang W, Ravindra NM (2016) Optical properties and temperature dependence of energy gap of transition-metal dichalcogenides. In: Proceedings MS&T, Salt Lake City, Utah, 23–27 Oct 2016Google Scholar
  29. 30.
    Tang W, Rassay SS, Ravindra NM (2017) Electronic and optical properties of transition-metal dichalcogenides. Madridge J Nano Tech 2(1):59–65Google Scholar
  30. 31.
    Mukherjee B, Tseng F, Gunlycke D, Amara KK, Eda G, Simsek E (2015) Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible. Opt Mater Express 5:447–455CrossRefGoogle Scholar
  31. 32.
    Mak KF, Shan J, Heinz TF (2011) Seeing many-body effects in single-and few-layer graphene: observation of two-dimensional saddle-point excitons. Phys Rev Lett 106:046401CrossRefGoogle Scholar
  32. 33.
    Arora A, Koperski M, Nogajewski K, Marcus J, Faugeras C, Potemski M (2015) Excitonic resonances in thin films of WSe2: from monolayer to bulk material. Nanoscale 7:10421–10429CrossRefGoogle Scholar
  33. 34.
    Mattheiss L (1973) Band structures of transition-metal-dichalcogenide layer compounds. Phys Rev B 8:3719CrossRefGoogle Scholar
  34. 35.
    Carvalho A, Ribeiro R, Neto AC (2013) Band nesting and the optical response of two-dimensional semiconducting transition metal dichalcogenides. Phys Rev B 88:115205CrossRefGoogle Scholar
  35. 36.
    Jin W et al (2013) Direct measurement of the thickness-dependent electronic band structure of MoS2 using angle-resolved photoemission spectroscopy. Phys Rev Lett 111(10):106801CrossRefGoogle Scholar
  36. 37.
    Fivaz R, Mooser E (1967) Mobility of charge carriers in semiconducting layer structures. Phys Rev 163:743CrossRefGoogle Scholar
  37. 38.
    Radisavljevic B, Radenovic A, Brivio J, Giacometti IV, Kis A (2011) Single-layer MoS2 transistors. Nat Nanotechnol 6(3):147–150CrossRefGoogle Scholar
  38. 39.
    Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V, Morozov S et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102:10451–10453CrossRefGoogle Scholar
  39. 40.
    Ghatak S, Pal AN, Ghosh A (2011) Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5:7707–7712CrossRefGoogle Scholar
  40. 41.
    Radisavljevic B, Kis A (2013) Mobility engineering and a metal–insulator transition in monolayer MoS2. Nat Mater 12:815–820CrossRefGoogle Scholar
  41. 42.
    Kaasbjerg K, Thygesen KS, Jacobsen KW (2012) Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys Rev B 85:115317CrossRefGoogle Scholar
  42. 43.
    Liu L, Kumar SB, Ouyang Y, Guo J (2011) Performance limits of monolayer transition metal dichalcogenide transistors. IEEE Trans Electron Devices 58:3042–3047CrossRefGoogle Scholar
  43. 44.
    Jo S, Ubrig N, Berger H, Kuzmenko AB, Morpurgo AF (2014) Mono-and bilayer WS2 light-emitting transistors. Nano Lett 14:2019–2025CrossRefGoogle Scholar
  44. 45.
    Ovchinnikov D, Allain A, Huang Y-S, Dumcenco D, Kis A (2014) Electrical transport properties of single-layer WS2. ACS Nano 8:8174–8181CrossRefGoogle Scholar
  45. 46.
    Podzorov V, Gershenson M, Kloc C, Zeis R, Bucher E (2004) High-mobility field-effect transistors based on transition metal dichalcogenides. Appl Phys Lett 84:3301–3303CrossRefGoogle Scholar
  46. 47.
    Jariwala D, Sangwan VK, Late DJ, Johns JE, Dravid VP, Marks TJ et al (2013) Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl Phys Lett 102:173107CrossRefGoogle Scholar
  47. 48.
    Baugher BW, Churchill HO, Yang Y, Jarillo-Herrero P (2013) Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett 13:4212–4216CrossRefGoogle Scholar
  48. 49.
    Zeng L, Xin Z, Chen S, Du G, Kang J, Liu X (2013) Remote phonon and impurity screening effect of substrate and gate dielectric on electron dynamics in single layer MoS2. Appl Phys Lett 103:113505CrossRefGoogle Scholar
  49. 50.
    Das S, Chen H-Y, Penumatcha AV, Appenzeller J (2012) High performance multilayer MoS2 transistors with scandium contacts. Nano Lett 13:100–105CrossRefGoogle Scholar
  50. 51.
    Popov I, Seifert G, Tománek D (2012) Designing electrical contacts to MoS2 monolayers: a computational study. Phys Rev Lett 108:156802CrossRefGoogle Scholar
  51. 52.
    Liu D, Guo Y, Fang L, Robertson J (2013) Sulfur vacancies in monolayer MoS2 and its electrical contacts. Appl Phys Lett 103:183113CrossRefGoogle Scholar
  52. 53.
    Walia S, Balendhran S, Wang Y, Ab Kadir R, Zoolfakar AS, Atkin P et al (2013) Characterization of metal contacts for two-dimensional MoS2 nanoflakes. Appl Phys Lett 103:232105CrossRefGoogle Scholar
  53. 54.
    Lee G-H, Yu Y-J, Cui X, Petrone N, Lee C-H, Choi MS et al (2013) Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 7:7931–7936CrossRefGoogle Scholar
  54. 55.
    Shi H, Pan H, Zhang Y-W, Yakobson BI (2013) Quasiparticle band structures and optical properties of strained monolayer MoS2 and WS2. Phys Rev B 87:155304CrossRefGoogle Scholar
  55. 56.
    Salvatore GA, Münzenrieder N, Barraud C, Petti L, Zysset C, Büthe L et al (2013) Fabrication and transfer of flexible few-layers MoS2 thin film transistors to any arbitrary substrate. ACS Nano 7:8809–8815CrossRefGoogle Scholar
  56. 57.
    Chang H-Y, Yang S, Lee J, Tao L, Hwang W-S, Jena D et al (2013) High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems. ACS Nano 7:5446–5452CrossRefGoogle Scholar
  57. 58.
    Wang H, Yu L, Lee Y-H, Fang W, Hsu A, Herring P et al (2012) Large-scale 2D electronics based on single-layer MoS2 grown by chemical vapor deposition, In: Presented at 2012 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 10–13 Dec 2012Google Scholar
  58. 59.
    Georgiou T, Jalil R, Belle BD, Britnell L, Gorbachev RV, Morozov SV et al (2013) Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics. Nat Nanotechnol 8:100–103CrossRefGoogle Scholar
  59. 60.
    Zhang W, Chuu C-P, Huang J-K, Chen C-H, Tsai M-L, Chang Y-H et al (2014) Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures. Sci Rep 4:3826CrossRefGoogle Scholar
  60. 61.
    Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499:419–425CrossRefGoogle Scholar
  61. 62.
    Choi W, Cho MY, Konar A, Lee JH, Cha GB, Hong SC et al (2012) High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv Mater 24:5832–5836CrossRefGoogle Scholar
  62. 63.
    Perea-López N, Elías AL, Berkdemir A, Castro-Beltran A, Gutiérrez HR, Feng S et al (2013) Photosensor device based on few-layered WS2 films. Adv Func Mater 23:5511–5517CrossRefGoogle Scholar
  63. 64.
    Yin Z, Li H, Li H, Jiang L, Shi Y, Sun Y et al (2011) Single-layer MoS2 phototransistors. ACS Nano 6:74–80CrossRefGoogle Scholar
  64. 65.
    Lee HS, Min S-W, Chang Y-G, Park MK, Nam T, Kim H et al (2012) MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett 12:3695–3700CrossRefGoogle Scholar
  65. 66.
    Li Y, Xu C-Y, Wang J-Y, Zhen L (2014) Photodiode-like behavior and excellent photoresponse of vertical Si/monolayer MoS2 heterostructures. Sci Rep 4:7186CrossRefGoogle Scholar
  66. 67.
    Wi S, Chen M, Nam H, Liu AC, Meyhofer E, Liang X (2014) High blue-near ultraviolet photodiode response of vertically stacked graphene-MoS2-metal heterostructures. Appl Phys Lett 104:232103CrossRefGoogle Scholar
  67. 68.
    Bernardi M, Palummo M, Grossman JC (2013) Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett 13:3664–3670CrossRefGoogle Scholar
  68. 69.
    Fontana M, Deppe T, Boyd AK, Rinzan M, Liu AY, Paranjape M et al (2013) Electron-hole transport and photovoltaic effect in gated MoS2 Schottky junctions. Sci Rep 3:1634CrossRefGoogle Scholar
  69. 70.
    Ye Y, Ye Z, Gharghi M, Yin X, Zhu H, Zhao M et al (2014) Exciton-related electroluminescence from monolayer MoS2. In: Presented at the CLEO: science and innovations, San Jose, CA, USA, 8–13 Jun 2014Google Scholar
  70. 71.
    Li X, Zhu H (2015) Two-dimensional MoS2: properties, preparation, and applications. J Materiomics 1(1):33–44CrossRefGoogle Scholar
  71. 72.
    Wilson JA, Yoffe AD (1969) The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv Phys 18:193CrossRefGoogle Scholar
  72. 73.
    Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7(11):699–712CrossRefGoogle Scholar
  73. 74.
    Arora A, Koperski M, Nogajewski K, Marcus J, Faugeras C, Potemski M (2015) Excitonic resonances in thin films of WSe2: from monolayer to bulk material. Nanoscale 7(23):10421–10429CrossRefGoogle Scholar
  74. 75.
    Liu W, Kang J, Sarkar D, Khatami Y, Jena D, Banerjee K (2013) Role of metal contacts in designing high-performance monolayer n-type WSe2 field effect transistors. Nano Lett 13(5):1983–1990CrossRefGoogle Scholar
  75. 76.
    Ross JS, Wu S, Yu H, Ghimire NJ, Jones AM, Aivazian G, Xu X (2013) Electrical control of neutral and charged excitons in a monolayer semiconductor. Nat Commun 4:1474CrossRefGoogle Scholar
  76. 77.
    Wang Z, Su Q, Yin GQ, Shi J, Deng H, Guan J, Fu YQ (2014) Structure and electronic properties of transition metal dichalcogenide MX 2 (M = Mo, W, Nb; X = S, Se) monolayers with grain boundaries. Mater Chem Phys 147(3):1068–1073CrossRefGoogle Scholar
  77. 78.
    Brixner LH (1962) Preparation and properties of the single crystalline AB2-type selenides and tellurides of niobium, tantalum, molybdenum and tungsten. J Inorg Nucl Chem 24:257–263CrossRefGoogle Scholar
  78. 79.
    Walker P, Tarn WH (1990) CRC handbook of metal etchants. CRC Press, Boca Raton, FLGoogle Scholar
  79. 80.
    Anedda A, Fortin E, Raga F (1979) Optical spectra in WSe2. Can J Phys 57:368–374CrossRefGoogle Scholar
  80. 81.
    El-Mahalawy SH, Evans BL (1977) Temperature dependence of the electrical conductivity and hall coefficient in 2H-MoS2, MoSe2, WSe2, and MoTe2. Phys Status Solidi (b) 79:713–722CrossRefGoogle Scholar
  81. 82.
    Hoffmann R (1988) Solids and surfaces: a chemist’s view of bonding in extended structures. VCH Publ, New YorkCrossRefGoogle Scholar
  82. 83.
    Izyumov YA, Syromyatnikov VN (2012) Phase transitions and crystal symmetry, vol 38. Springer Science & Business Media, BerlinGoogle Scholar
  83. 84.
    Peter YU, Cardona M (2010) Fundamentals of semiconductors: physics and materials properties. Springer Science & Business Media, BerlinGoogle Scholar
  84. 85.
    Mak KF, Lee C, Hone J, Shan J, Heinz TF (2010) Atomically thin MoS2: a new direct-gap semiconductor. Phys Rev Lett 105(13):136805CrossRefGoogle Scholar
  85. 86.
    Zhu ZY, Cheng YC, Schwingenschlögl U (2011) Giant spin-orbit-induced spin splitting in two-dimensional transition-metal dichalcogenide semiconductors. Phys Rev B 84(15):153402CrossRefGoogle Scholar
  86. 87.
    Zhang Y, Ugeda MM, Jin C, Shi SF, Bradley AJ, Martin-Recio A, Zhou B (2016) Electronic structure, surface doping, and optical response in epitaxial WSe2 thin films. Nano Lett 16(4):2485–2491CrossRefGoogle Scholar
  87. 88.
    Van Zeghbroeck B (2011) Principles of electronic devices. University of Colorado, DenverGoogle Scholar
  88. 89.
    Tongay S et al (2012) Thermally driven crossover from indirect toward direct bandgap in 2D semiconductors: MoSe2 versus MoS2. Nano Lett 12(11):5576–5580CrossRefGoogle Scholar
  89. 90.
    Yuan H, Liu Z, Xu G, Zhou B, Wu S, Dumcenco D, Kandyba V (2016) Evolution of the valley position in bulk transition-metal chalcogenides and their monolayer limit. Nano Lett 16(8):4738–4745CrossRefGoogle Scholar
  90. 91.
    Li Y, Chernikov A, Zhang X, Rigosi A, Hill HM, van der Zande AM, Heinz TF (2014) Measurement of the optical dielectric function of monolayer transition-metal dichalcogenides: MoS2, MoSe2, WS2, and WSe2. Phys Rev B 90(20):205422CrossRefGoogle Scholar
  91. 92.
    Mukherjee B, Tseng F, Gunlycke D, Amara KK, Eda G, Simsek E (2015) Complex electrical permittivity of the monolayer molybdenum disulfide (MoS2) in near UV and visible. Opt Mater Express 5(2):447–455CrossRefGoogle Scholar
  92. 93.
    Zhang H, Ma Y, Wan Y, Rong X, Xie Z, Wang W, Dai L (2015) Measuring the refractive index of highly crystalline monolayer MoS2 with high confidence. Sci Rep 5Google Scholar
  93. 94.
    Liu HL, Shen CC, Su SH, Hsu CL, Li MY, Li LJ (2014) Optical properties of monolayer transition metal dichalcogenides probed by spectroscopic ellipsometry. Appl Phys Lett 105(20):201905CrossRefGoogle Scholar
  94. 95.
    Mattheiss LF (1973) Band structures of transition-metal-dichalcogenide layer compounds. Phys Rev B 8(8):3719CrossRefGoogle Scholar
  95. 96.
    Ravindra NM, Narayan J, Ance C, Dechelle F, Ferraton JP (1986) Low-temperature optical properties of hydrogenated amorphous silicon. Mater Lett 4(8):343–349CrossRefGoogle Scholar
  96. 97.
    Ravindra NM, Narayan J (1987) Optical properties of silicon related insulators. J Appl Phys 61(5):2017–2021CrossRefGoogle Scholar
  97. 98.
    Brumme T, Calandra M, Mauri F (2015) First-principles theory of field-effect doping in transition-metal dichalcogenides: structural properties, electronic structure, Hall coefficient, and electrical conductivity. Phys Rev B 91(15):155436CrossRefGoogle Scholar
  98. 99.
    Thakar BA (2011) Investigations of TMDCs and use in solar cell. Thesis. Hemchandracharya North Gujarat University, Patan, 2011. Shodhganga. Web. 23 Jun 2015. http://shodhganga.inflibnet.ac.in/handle/10603/43941
  99. 100.
    Hang Y, Li Q, Luo W, He Y, Zhang X, Peng G (2016) Photo-electrical properties of trilayer MoSe2 nanoflakes. Nano 11(7):1650082CrossRefGoogle Scholar
  100. 101.
    Liu B, Ma Y, Zhang A, Chen L, Abbas AN, Liu Y, Zhou C (2016) High-performance WSe2 field-effect transistors via controlled formation of in-plane heterojunctions. ACS Nano 10(5):5153–5160CrossRefGoogle Scholar
  101. 102.
    Berraquero CP, Barbone M, Kara DM, Chen X, Goykhman I, Yoon D, Ferrari AC (2016) Atomically thin quantum light emitting diodes. arXiv preprint arXiv:1603.08795
  102. 103.
    Colinge JP (2002) Physics of semiconductor devices. Springer, New YorkGoogle Scholar
  103. 104.
    Furchi MM, Zechmeister AA, Hoeller F, Wachter S, Pospischil A, Mueller T (2017) Photovoltaics in Van der Waals heterostructures. IEEE J Sel Top Quant Electron 23(1):1–11CrossRefGoogle Scholar
  104. 105.
    Kline G, Kam K, Canfield D, Parkinson BA (1981) Efficient and stable photoelectrochemical cells constructed with WSe2 and MoSe2 photoanodes. Solar Energy Mater 4(3):301–308CrossRefGoogle Scholar
  105. 106.
    Bernardi M, Palummo M, Grossman JC (2013) Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano Lett 13(8):3664–3670CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nuggehalli M. Ravindra
    • 1
    Email author
  • Weitao Tang
    • 1
  • Sushant Rassay
    • 1
  1. 1.New Jersey Institute of TechnologyNewarkUSA

Personalised recommendations