Semiconductors pp 219-332 | Cite as

Graphene: Properties, Synthesis, and Applications

  • Sarang Muley
  • Nuggehalli M. RavindraEmail author


The electronic, optical, and thermoelectric properties of graphene and graphene nanoribbons as a function of number of layers, doping, chirality, temperature, and lattice defects are described. Some aspects related to the methods of synthesis of graphene and applications of graphene are presented.


Graphene Electronic properties Optical properties Thermoelectric properties Defects Synthesis Applications 


  1. 1.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6(3):183–191CrossRefGoogle Scholar
  2. 2.
    Tsang ACH, Kwok HYH, Leung DYC (2017) The use of graphene based materials for fuel cell, photovoltaics, and supercapacitor electrode materials. Solid State Sci 67:A1–A14CrossRefGoogle Scholar
  3. 3.
    Talbot C (1999) Fullerene and nanotube chemistry: an update. Sch Sci Rev 81:37–48Google Scholar
  4. 4.
    Birkett PR et al (1995) Holey fullerenes! a bis-lactone derivative of fullerene with an eleven-atom orifice. J Chem Soc, Chem Commun 18:1869–1870CrossRefGoogle Scholar
  5. 5.
    Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Chapter 2—Carbon materials. In: Eklund MS, Dresselhaus G, Dresselhaus PC (eds) Science of fullerenes and carbon nanotubes. Academic Press, San Diego, pp 15–59CrossRefGoogle Scholar
  6. 6.
    Novoselov KS et al (2004) Electric field effect in atomically thin carbon films. Science 306(5696):666–669CrossRefGoogle Scholar
  7. 7.
    Luo H et al (2014) Preparation of three-dimensional braided carbon fiber-reinforced PEEK composites for potential load-bearing bone fixations. Part I. Mechanical properties and cytocompatibility. J Mech Behav Biomed Mater 29:103–113CrossRefGoogle Scholar
  8. 8.
    Chung DDL (2000) Thermal analysis of carbon fiber polymer-matrix composites by electrical resistance measurement. Thermochim Acta 364(1–2):121–132CrossRefGoogle Scholar
  9. 9.
    Yakobson B, Avouris P (2001) Mechanical properties of carbon nanotubes. In: Dresselhaus M, Dresselhaus G, Avouris P (eds) Carbon nanotubes. Springer, Berlin, pp 287–327Google Scholar
  10. 10.
    Ranjbartoreh AR et al (2011) Advanced mechanical properties of graphene paper. J Appl Phys 109(1):014306 (6 p)CrossRefGoogle Scholar
  11. 11.
    Wallace PR (1947) The band theory of graphite. Phys Rev 71(9):622–634CrossRefGoogle Scholar
  12. 12.
    Novoselov KS et al (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci USA 102(30):10451–10453CrossRefGoogle Scholar
  13. 13.
    Gerstner E (2010) Nobel Prize 2010: Andre Geim & Konstantin Novoselov. Nat Phys 6(11):836CrossRefGoogle Scholar
  14. 14.
    Landau LD (1937) Zur Theorie der phasenumwandlungen II. Phys Z Sowjetunion 11:26–35Google Scholar
  15. 15.
    Cahn RW, Harris B (1969) Newer forms of carbon and their uses. Nature 221(5176):132–141CrossRefGoogle Scholar
  16. 16.
    Intriguing state of matter previously predicted in graphene-like materials might not exist after all, 2013 [11/13/2014]. Available from:
  17. 17.
    Partoens B, Peeters FM (2006) From graphene to graphite: electronic structure around the K point. Phys Rev B 74(7):075404CrossRefGoogle Scholar
  18. 18.
    Nair RR et al (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881):1308CrossRefGoogle Scholar
  19. 19.
    Georgakilas V et al (2012) Functionalization of graphene: covalent and non-covalent approaches, derivatives and applications. Chem Rev 112(11):6156–6214CrossRefGoogle Scholar
  20. 20.
    Muley SV, Ravindra NM (2014) Graphene–environmental and sensor applications. In: Hu A, Apblett A (eds) Nanotechnology for water treatment and purification. Springer International Publishing, pp 159–224Google Scholar
  21. 21.
    Yin PT et al (2013) Prospects for graphene-nanoparticle-based hybrid sensors. Phys Chem Chem Phys 15(31):12785–12799CrossRefGoogle Scholar
  22. 22.
    Wang JT-W et al (2013) Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells. Nano Lett 14(2):724–730CrossRefGoogle Scholar
  23. 23.
    El-Kady MF et al (2012) Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335(6074):1326–1330CrossRefGoogle Scholar
  24. 24.
    Stankovich S et al (2006) Graphene-based composite materials. Nature 442(7100):282–286CrossRefGoogle Scholar
  25. 25.
    Kim KS et al (2009) Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457(7230):706–710CrossRefGoogle Scholar
  26. 26.
    Liu Q et al (2009) Polymer photovoltaic cells based on solution-processable graphene and P3HT. Adv Funct Mater 19(6):894–904CrossRefGoogle Scholar
  27. 27.
    Bae S et al (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano 5(8):574–578CrossRefGoogle Scholar
  28. 28.
    Tzalenchuk A et al (2010) Towards a quantum resistance standard based on epitaxial graphene. Nat Nano 5(3):186–189CrossRefGoogle Scholar
  29. 29.
    Li X et al (2009) Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324(5932):1312–1314CrossRefGoogle Scholar
  30. 30.
    Katsnelson MI, Novoselov KS (2007) Graphene: new bridge between condensed matter physics and quantum electrodynamics. Solid State Commun 143(1–2):3–13CrossRefGoogle Scholar
  31. 31.
    Simon J, Greiner M (2012) Condensed-matter physics: a duo of graphene mimics. Nature 483(7389):282–284CrossRefGoogle Scholar
  32. 32.
    Chahardeh JB (2012) A review on graphene transistors. Int J Adv Res Comput Commun Eng 1(4)Google Scholar
  33. 33.
    Novoselov KS et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065):197–200CrossRefGoogle Scholar
  34. 34.
    Pisana S et al (2007) Breakdown of the adiabatic Born-Oppenheimer approximation in graphene. Nat Mater 6(3):198–201CrossRefGoogle Scholar
  35. 35.
    Zhang D et al (2012) Preparation, characterization, and application of electrochemically functional graphene nanocomposites by one-step liquid-phase exfoliation of natural flake graphite with methylene blue. Nano Res 5(12):875–887CrossRefGoogle Scholar
  36. 36.
    Yoon TL et al (2013) Epitaxial growth of graphene on 6H-silicon carbide substrate by simulated annealing method. J Chem Phys 139(20):204702CrossRefGoogle Scholar
  37. 37.
    Yao Y et al (2011) Controlled growth of multilayer, few-layer, and single-layer graphene on metal substrates. J Phys Chem C 115(13):5232–5238CrossRefGoogle Scholar
  38. 38.
    Lizzit S et al (2012) Transfer-free electrical insulation of epitaxial graphene from its metal substrate. Nano Lett 12(9):4503–4507CrossRefGoogle Scholar
  39. 39.
    Voloshina E, Dedkov Y (2012) Graphene on metallic surfaces: problems and perspectives. Phys Chem Chem Phys 14(39):13502–13514CrossRefGoogle Scholar
  40. 40.
    Zhang Y, Zhang L, Zhou C (2013) Review of chemical vapor deposition of graphene and related applications. Acc Chem Res 46(10):2329–2339CrossRefGoogle Scholar
  41. 41.
    Dato A et al (2008) Substrate-free gas-phase synthesis of graphene sheets. Nano Lett 8(7):2012–2016CrossRefGoogle Scholar
  42. 42.
    Koo Y et al (1972) Photocatalyst nanomaterials for environmental challenges and opportunities. Nature 238:37–38CrossRefGoogle Scholar
  43. 43.
    Hawthorne MF, Owen DA (1971) Chelated biscarborane transition metal derivatives formed through carbon-metal sigma bonds. J Am Chem Soc 93(4):873–880CrossRefGoogle Scholar
  44. 44.
    Blakely JM, Kim JS, Potter HC (1970) Segregation of carbon to the (100) surface of nickel. J Appl Phys 41(6):2693–2697CrossRefGoogle Scholar
  45. 45.
    Ebert LB (1976) Intercalation compounds of graphite. Annu Rev Mater Sci 6(1):181–211CrossRefGoogle Scholar
  46. 46.
    Kovtyukhova NI et al (2014) Non-oxidative intercalation and exfoliation of graphite by Brønsted acids. Nat Chem (advance online publication)Google Scholar
  47. 47.
    Boehm HP, Setton R, Stumpp E (1994) Nomenclature and terminology of graphite intercalation compounds (IUPAC Recommendations 1994). Pure Appl Chem 66:1893CrossRefGoogle Scholar
  48. 48.
    Morozov SV et al (2008) Giant intrinsic carrier mobilities in graphene and its bilayer. Phys Rev Lett 100(1):016602CrossRefGoogle Scholar
  49. 49.
    Nair RR et al (2011) Spin-half paramagnetism in graphene induced by point defects. Nat Phys 8:199–202CrossRefGoogle Scholar
  50. 50.
    Nair RR et al (2013) Dual origin of defect magnetism in graphene and its reversible switching by molecular doping. Nat Commun 4:1–6Google Scholar
  51. 51.
    Berger C et al (2006) Electronic confinement and coherence in patterned epitaxial graphene. Science 312(5777):1191–1196CrossRefGoogle Scholar
  52. 52.
    Tan X et al (2012) Optimizing the thermoelectric performance of zigzag and chiral carbon nanotubes. Nanoscale Res Lett 7:116CrossRefGoogle Scholar
  53. 53.
    Lee C et al (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321(5887):385–388CrossRefGoogle Scholar
  54. 54.
    Chen J-H et al (2008) Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat Nano 3(4):206–209CrossRefGoogle Scholar
  55. 55.
    Ghosh S et al (2010) Dimensional crossover of thermal transport in few-layer graphene. Nat Mater 9(7):555–558CrossRefGoogle Scholar
  56. 56.
    Murali R et al (2009) Breakdown current density of graphene nanoribbons. Appl Phys Lett 94(24):243114CrossRefGoogle Scholar
  57. 57.
    Xu G et al (2010) Enhanced conductance fluctuation by quantum confinement effect in graphene nanoribbons. Nano Lett 10(11):4590–4594CrossRefGoogle Scholar
  58. 58.
    Son Y-W, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97(21):216803CrossRefGoogle Scholar
  59. 59.
    Jia X et al (2011) Graphene edges: a review of their fabrication and characterization. Nanoscale 3(1):86–95CrossRefGoogle Scholar
  60. 60.
    Giavaras G, Nori F (2010) Graphene quantum dots formed by a spatial modulation of the Dirac gap. Appl Phys Lett 97(24):243106CrossRefGoogle Scholar
  61. 61.
    Guinea F, Katsnelson MI, Geim AK (2010) Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat Phys 6(1):30–33CrossRefGoogle Scholar
  62. 62.
    Allen MT, Martin J, Yacoby A (2012) Gate-defined quantum confinement in suspended bilayer graphene. Nat Commun 3:934CrossRefGoogle Scholar
  63. 63.
    Żebrowski DP, Wach E, Szafran B (2013) Confined states in quantum dots defined within finite flakes of bilayer graphene: coupling to the edge, ionization threshold, and valley degeneracy. Phys Rev B 88(16):165405CrossRefGoogle Scholar
  64. 64.
    Jin JE et al (2016) Surface modulation of graphene field effect transistors on periodic trench structure. ACS Appl Mater Interfaces 8(28):18513–18518CrossRefGoogle Scholar
  65. 65.
    Chen Y-C et al (2013) Tuning the band gap of graphene nanoribbons synthesized from molecular precursors. ACS Nano 7(7):6123–6128CrossRefGoogle Scholar
  66. 66.
    Chang SL et al (2014) Geometric and electronic properties of edge-decorated graphene nanoribbons. Sci Rep 4:6038CrossRefGoogle Scholar
  67. 67.
    Cano-Márquez AG et al (2009) Ex-MWNTs: graphene sheets and ribbons produced by lithium intercalation and exfoliation of carbon nanotubes. Nano Lett 9(4):1527–1533CrossRefGoogle Scholar
  68. 68.
    Mak KF et al (2009) Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys Rev Lett 102(25):256405CrossRefGoogle Scholar
  69. 69.
    Xu X et al (2014) Spin and pseudospins in layered transition metal dichalcogenides. Nat Phys 10(5):343–350CrossRefGoogle Scholar
  70. 70.
    Massless Dirac Carriers in Graphene, 2014 [05/09/2014]. Available from:
  71. 71.
    Bao W et al (2009) Controlled ripple texturing of suspended graphene and ultrathin graphite membranes. Nat Nano 4(9):562–566CrossRefGoogle Scholar
  72. 72.
    Cho D-H et al (2013) Effect of surface morphology on friction of graphene on various substrates. Nanoscale 5(7):3063–3069CrossRefGoogle Scholar
  73. 73.
    Chattopadhyaya M, Alam MM, Chakrabarti S (2012) On the microscopic origin of bending of graphene nanoribbons in the presence of a perpendicular electric field. Phys Chem Chem Phys 14(26):9439–9443CrossRefGoogle Scholar
  74. 74.
    Castro Neto AH et al (2009) The electronic properties of graphene. Rev Mod Phys 81(1):109–162CrossRefGoogle Scholar
  75. 75.
    Ando T (2009) The electronic properties of graphene and carbon nanotubes. NPG Asia Mater 1:17–21CrossRefGoogle Scholar
  76. 76.
    Rani P, Jindal VK (2013) Designing band gap of graphene by B and N dopant atoms. RSC Adv 3(3):802–812CrossRefGoogle Scholar
  77. 77.
    Preuss P (2008) Surprising graphene: honing in on graphene electronics with infrared synchrotron radiation.
  78. 78.
    Li HJ et al (2005) Multichannel ballistic transport in multiwall carbon nanotubes. Phys Rev Lett 95(8):086601CrossRefGoogle Scholar
  79. 79.
    de La Fuenta J (2013) Properties of graphene.
  80. 80.
    Richter N et al (2017) Robust two-dimensional electronic properties in three-dimensional microstructures of rotationally stacked turbostratic graphene. Phys Rev Appl 7(2):024022CrossRefGoogle Scholar
  81. 81.
    Li X et al (2009) Simultaneous nitrogen-doping and reduction of graphene oxide. Science 324:768–771CrossRefGoogle Scholar
  82. 82.
    Martins TB et al (2007) Electronic and transport properties of boron-doped graphene nanoribbons. Phys Rev Lett 98(19):196803CrossRefGoogle Scholar
  83. 83.
    Sharma R et al (2017) Investigation on effect of boron and nitrogen substitution on electronic structure of graphene. FlatChem 1:20–33CrossRefGoogle Scholar
  84. 84.
    Ci L et al (2010) Atomic layers of hybridized boron nitride and graphene domains. Nat Mater 9(5):430–435CrossRefGoogle Scholar
  85. 85.
    Panchakarla LS et al (2009) Synthesis, structure, and properties of boron- and nitrogen-doped graphene. Adv Mater 21(46):4726–4730Google Scholar
  86. 86.
    Yu SS et al (2006) Nature of substitutional impurity atom B/N in zigzag single-wall carbon nanotubes revealed by first-principle calculations. IEEE Trans Nanotechnol 5(5):595–598CrossRefGoogle Scholar
  87. 87.
    Cao C et al (2017) Superiority of boron, nitrogen and iron ternary doped carbonized graphene oxide-based catalysts for oxygen reduction in microbial fuel cells. Nanoscale 9(10):3537–3546CrossRefGoogle Scholar
  88. 88.
    Chen F et al (2017) Nitrogen-doped graphene oxide for effectively removing boron ions from seawater. Nanoscale 9(1):326–333CrossRefGoogle Scholar
  89. 89.
    Kaloni TP et al (2011) Oxidation of monovacancies in graphene by oxygen molecules. J Mater Chem 21(45):18284–18288CrossRefGoogle Scholar
  90. 90.
    Fan Y et al (2011) Tunable electronic structures of graphene/boron nitride heterobilayers. Appl Phys Lett 98(8):083103CrossRefGoogle Scholar
  91. 91.
    Kaloni TP, Cheng YC, Schwingenschlogl U (2012) Electronic structure of superlattices of graphene and hexagonal boron nitride. J Mater Chem 22(3):919–922CrossRefGoogle Scholar
  92. 92.
    Cheng YC et al (2011) Origin of the high p-doping in F intercalated graphene on SiC. Appl Phys Lett 99(5):053117CrossRefGoogle Scholar
  93. 93.
    Ramasubramaniam A, Naveh D, Towe E (2011) Tunable band gaps in bilayer graphene–BN heterostructures. Nano Lett 11(3):1070–1075CrossRefGoogle Scholar
  94. 94.
    Wei X et al (2011) Electron-beam-induced substitutional carbon doping of boron nitride nanosheets, nanoribbons, and nanotubes. ACS Nano 5(4):2916–2922CrossRefGoogle Scholar
  95. 95.
    McCann E, Abergel DS, Fal’ko VI (2007) The low energy electronic band structure of bilayer graphene. Eur Phys J Spec Top 148(1):91–103CrossRefGoogle Scholar
  96. 96.
    Fujii S et al (2014) Role of edge geometry and chemistry in the electronic properties of graphene nanostructures. Faraday DiscussGoogle Scholar
  97. 97.
    Huang PY et al (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469(7330):389–392CrossRefGoogle Scholar
  98. 98.
    Ayuela A et al (2014) Electronic properties of graphene grain boundaries. New J Phys 16:083018CrossRefGoogle Scholar
  99. 99.
    Denis PA, Ullah S, Sato F (2017) Triple doped monolayer graphene with boron, nitrogen, aluminum, silicon, phosphorus and sulfur. ChemPhysChem 18:1864–1873CrossRefGoogle Scholar
  100. 100.
    Pacheco Sanjuan AA et al (2014) Graphene’s morphology and electronic properties from discrete differential geometry. Phys Rev B 89(12):121403CrossRefGoogle Scholar
  101. 101.
    Chen K et al (2012) Electronic properties of graphene altered by substrate surface chemistry and externally applied electric field. J Phys Chem C 116(10):6259–6267CrossRefGoogle Scholar
  102. 102.
    Kretinin AV et al (2014) Electronic properties of graphene encapsulated with different two-dimensional atomic crystals. Nano Lett 14(6):3270–3276CrossRefGoogle Scholar
  103. 103.
    Majidi R (2016) Electronic properties of porous graphene, α-graphyne, graphene-like, and graphyne-like BN sheets. Can J Phys 94(3):305–309CrossRefGoogle Scholar
  104. 104.
    Bonaccorso F et al (2010) Graphene photonics and optoelectronics. Nat Photon 4(9):611–622CrossRefGoogle Scholar
  105. 105.
    Xia F et al (2009) Ultrafast graphene photodetector. Nat Nano 4(12):839–843CrossRefGoogle Scholar
  106. 106.
    Wang F et al (2008) Gate-variable optical transitions in graphene. Science 320(5873):206–209CrossRefGoogle Scholar
  107. 107.
    Rani P, Dubey GS, Jindal VK (2014) DFT study of optical properties of pure and doped graphene. Physica E 62:28–35CrossRefGoogle Scholar
  108. 108.
    Falkovsky LA (2008) Optical properties of graphene. J Phys Conf Ser 129(1):012004CrossRefGoogle Scholar
  109. 109.
    Cheng JL, Salazar C, Sipe JE (2013) Optical properties of functionalized graphene. Phys Rev B 88(4):045438CrossRefGoogle Scholar
  110. 110.
    Eberlein T et al (2008) Plasmon spectroscopy of free-standing graphene films. Phys Rev B 77(23):233406CrossRefGoogle Scholar
  111. 111.
    Marini A et al (2009) Yambo: an ab initio tool for excited state calculations. Comput Phys Commun 180(8):1392–1403CrossRefGoogle Scholar
  112. 112.
    Sedelnikova OV, Bulusheva LG, Okotrub AV (2011) Ab initio study of dielectric response of rippled graphene. J Chem Phys 134(24):244707CrossRefGoogle Scholar
  113. 113.
    Marinopoulos AG et al (2004) Ab initio study of the optical absorption and wave-vector-dependent dielectric response of graphite. Phys Rev B 69(24):245419CrossRefGoogle Scholar
  114. 114.
    Marinopoulos AG et al (2004) Optical absorption and electron energy loss spectra of carbon and boron nitride nanotubes: a first-principles approach. Appl Phys A 78(8):1157–1167CrossRefGoogle Scholar
  115. 115.
    De Corato M et al (2014) Optical properties of bilayer graphene nanoflakes. J Phys Chem CGoogle Scholar
  116. 116.
    Chernov AI et al (2013) Optical properties of graphene nanoribbons encapsulated in single-walled carbon nanotubes. ACS Nano 7(7):6346–6353CrossRefGoogle Scholar
  117. 117.
    Hong T et al (2014) Thermal and optical properties of freestanding flat and stacked single-layer graphene in aqueous media. Appl Phys Lett 104(22):223102CrossRefGoogle Scholar
  118. 118.
    Yang K, Arezoomandan S, Sensale-Rodriguez B (2013) The linear and non-linear THz properties of graphene. Int J Terahertz Sci Technol 6(4):223–233Google Scholar
  119. 119.
    Bernardi M et al (2016) Optical and electronic properties of two-dimensional layered materialsGoogle Scholar
  120. 120.
    Wolf S, Tauber RN (1986) Crystalline defects, thermal processing, and gettering. In: Wolf S, Tauber RN (eds) Silicon processing for the VLSI era, Volume 1—Process technology. Lattice Press, Sunset Beach, CA, pp 36–72Google Scholar
  121. 121.
    Borca-Tascuic T, Achimov DA, Chen G (1998) Difference between wafer temperature and thermocouple reading during rapid thermal processing. Mater Res Soc Symp Proc 525:103–108CrossRefGoogle Scholar
  122. 122.
    Wagner J, Boebel FG (1996) Temperature measurement at RTP facilities—an overview. Mater Res Soc Symp Proc 429:303–308CrossRefGoogle Scholar
  123. 123.
    Muley SV, Ravindra NM (2014) Emissivity of electronic materials, coatings, and structures. JOM 66:616–636CrossRefGoogle Scholar
  124. 124.
    Ravindra NM et al (2001) Emissivity measurements and modeling of silicon-related materials: an overview. Int J Thermophys 22(5):1593–1611CrossRefGoogle Scholar
  125. 125.
    Kosonocky WF et al (1994) Multiwavelength imaging pyrometer. In: Infrared detectors and focal plane arrays III, Proceedings SPIE, 1994, vol 2225, pp 26–43Google Scholar
  126. 126.
    Kaplinsky MB et al (1997) Recent advances in the development of a multiwavelength imaging pyrometer. Opt Eng 36(11):3176–3187CrossRefGoogle Scholar
  127. 127.
    Han Q et al (2013) Highly sensitive hot electron bolometer based on disordered graphene. Sci Rep 3(3533):6Google Scholar
  128. 128.
    Gu D (2007) Terahertz imaging system using hot electron bolometer technology. In: Electrical Engineering. University of Massachusetts Amherst, Ann Arbor, p 174Google Scholar
  129. 129.
    Kubakaddi SS (2009) Interaction of massless Dirac electrons with acoustic phonons in graphene at low temperatures. Phys Rev B 79(7):075417CrossRefGoogle Scholar
  130. 130.
    Oliver WC, Pharr GM (2004) Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology. J Mater Res 19(01):3–20CrossRefGoogle Scholar
  131. 131.
    Doerner MF, Nix WD (1986) A method for interpreting the data from depth-sensing indentation instruments. J Mater Res 1(04):601–609CrossRefGoogle Scholar
  132. 132.
    Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(06):1564–1583CrossRefGoogle Scholar
  133. 133.
    Cao G (2014) Atomistic studies of mechanical properties of graphene. Polymers 6(9):2404–2432CrossRefGoogle Scholar
  134. 134.
    Frank IW et al (2007) Mechanical properties of suspended graphene sheets. J Vac Sci Technol B 25(6):2558–2561CrossRefGoogle Scholar
  135. 135.
    Zhang Y, Pan C (2012) Measurements of mechanical properties and number of layers of graphene from nano-indentation. Diam Relat Mater 24:1–5CrossRefGoogle Scholar
  136. 136.
    Lee J-U, Yoon D, Cheong H (2012) Estimation of Young’s modulus of graphene by Raman spectroscopy. Nano Lett 12(9):4444–4448CrossRefGoogle Scholar
  137. 137.
    Lee C et al (2009) Elastic and frictional properties of graphene. Physica Status Solidi (b) 246(11–12):2562–2567CrossRefGoogle Scholar
  138. 138.
    Lee H et al (2009) Comparison of frictional forces on graphene and graphite. Nanotechnology 20(32):325701 (6 p)CrossRefGoogle Scholar
  139. 139.
    Lee C et al (2010) Frictional characteristics of atomically thin sheets. Science 328(5974):76–80CrossRefGoogle Scholar
  140. 140.
    Scharfenberg S et al (2011) Probing the mechanical properties of graphene using a corrugated elastic substrate. Appl Phys Lett 98(9):091908CrossRefGoogle Scholar
  141. 141.
    Sansoz F, Gang T (2010) A force-matching method for quantitative hardness measurements by atomic force microscopy with diamond-tipped sapphire cantilevers. Ultramicroscopy 111(1):11–19CrossRefGoogle Scholar
  142. 142.
    Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76(6):064120CrossRefGoogle Scholar
  143. 143.
    Wei X et al (2009) Nonlinear elastic behavior of graphene: ab initio calculations to continuum description. Physical Review B 80(20):205407CrossRefGoogle Scholar
  144. 144.
    Morgan III J (2006) Thomas-Fermi and other density-functional theories. In: Drake G (ed) Springer handbook of atomic, molecular, and optical physics. Springer New York, pp 295–306Google Scholar
  145. 145.
    Adachi H, Mukoyama T, Kawai J (2006) Hartree-Fock-Slater method for materials science: the DV-X Alpha method for design and characterization of materials. Springer, BerlinGoogle Scholar
  146. 146.
    Dinh PM (2005) Condensed matter theories. Nova Science Publishers, New YorkGoogle Scholar
  147. 147.
    Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864–B871CrossRefGoogle Scholar
  148. 148.
    Kotochigova S et al (2014) Atomic reference data for electronic structure calculations. NIST: Physical Measurement Laboratory, NISTGoogle Scholar
  149. 149.
    Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133–A1138CrossRefGoogle Scholar
  150. 150.
    Narasimhan S (2011) The Self Consistent Field ”(SCF) loop and some relevant parameters for quantum—ESPRESSO 2221(5)Google Scholar
  151. 151.
    Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23(10):5048–5079CrossRefGoogle Scholar
  152. 152.
    Bachelet GB, Hamann DR, Schlüter M (1982) Pseudopotentials that work: from H to Pu. Phys Rev B 26(8):4199–4228CrossRefGoogle Scholar
  153. 153.
    Ravindra NM et al (2003) Modeling and simulation of emissivity of silicon-related materials and structures. J Electron Mater 32(10):1052–1058CrossRefGoogle Scholar
  154. 154.
    Palik ED (1998) Handbook of optical constants of solids. In: Palik ED (ed). Academic Press, Waltham MA, pp 275–798Google Scholar
  155. 155.
    Zaitsev AM (2001) Refraction. In: Zaitsev AM (ed) Optical properties of diamond: a data handbook. Springer, Berlin, pp 1–9CrossRefGoogle Scholar
  156. 156.
    Weber JW, Calado VE, van de Sanden MCM (2010) Optical constants of graphene measured by spectroscopic ellipsometry. Appl Phys Lett 97(9):091904 (4 p)CrossRefGoogle Scholar
  157. 157.
    Hebb JP, Jensen KF (1996) J Electrochem Soc 143(3):1142–1151CrossRefGoogle Scholar
  158. 158.
    Allen MP, Tildesley DJ (1987) Computer simulation of liquids. Clarendon Press, OxfordGoogle Scholar
  159. 159.
    Haile JM (1992) Molecular dynamics simulation: elementary methods. Wiley, Clemson, USA, p 489Google Scholar
  160. 160.
    Greiner W, Neise L, Stöcker H (1995) Thermodynamics and statistical mechanics. Classical theoretical physics. Springer, New YorkGoogle Scholar
  161. 161.
    Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19CrossRefGoogle Scholar
  162. 162.
    Swope WC et al (1982) A computer simulation method for the calculation of equilibrium constants for the formation of physical clusters of molecules: application to small water clusters. J Chem Phys 76(1):637–649CrossRefGoogle Scholar
  163. 163.
    Andersen HC (1980) Molecular dynamics simulations at constant pressure and/or temperature. J Chem Phys 72(4):2384–2393CrossRefGoogle Scholar
  164. 164.
    Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581CrossRefGoogle Scholar
  165. 165.
    Nika DL et al (2009) Phonon thermal conduction in graphene: role of Umklapp and edge roughness scattering. Phys Rev B 79(15):155413CrossRefGoogle Scholar
  166. 166.
    Lan J et al (2009) Edge effects on quantum thermal transport in graphene nanoribbons: tight-binding calculations. Phys Rev B 79(11):115401CrossRefGoogle Scholar
  167. 167.
    Balandin AA et al (2008) Superior thermal conductivity of single-layer graphene. Nano Lett 8(3):902–907CrossRefGoogle Scholar
  168. 168.
    Müller-Plathe F (1997) A simple nonequilibrium molecular dynamics method for calculating the thermal conductivity. J Chem Phys 106(14):6082–6085CrossRefGoogle Scholar
  169. 169.
    Humphrey W, Dalke A, Schulten K (1996) VMD—visual molecular dynamics. J Mol Graph 14(1):33–38CrossRefGoogle Scholar
  170. 170.
    Kan Q et al (2013) Oliver-Pharr indentation method in determining elastic moduli of shape memory alloys—a phase transformable material. J Mech Phys Solids 61(10):2015–2033CrossRefGoogle Scholar
  171. 171.
    King RB (1987) Elastic analysis of some punch problems for a layered medium. Int J Solid Structures 23(12):1657–1664CrossRefGoogle Scholar
  172. 172.
    Wang W et al (2014) Nanoindentation experiments for single-layer rectangular graphene films: a molecular dynamics study. Nanoscale Res Lett 9(41):1–8Google Scholar
  173. 173.
    Kiselev SP, Zhirov EV (2013) Molecular dynamics simulation of deformation and fracture of graphene under uniaxial tension. Phys Mesomech 16(2):125–132CrossRefGoogle Scholar
  174. 174.
    Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9(8):3012–3015CrossRefGoogle Scholar
  175. 175.
    Carpio A, Bonilla LL (2008) Periodized discrete elasticity models for defects in graphene. Phys Rev B 78(8):085406CrossRefGoogle Scholar
  176. 176.
    Ghosh S et al (2008) Extremely high thermal conductivity of graphene: prospects for thermal management applications in nanoelectronic circuits. Appl Phys Lett 92(15):151911CrossRefGoogle Scholar
  177. 177.
    Hu J et al (2009) Frontiers of characterization and metrology for nanoelectronics. In: AIP Conference Proceedings No. 1173. AIP, New York, p 135Google Scholar
  178. 178.
    Xu X et al (2014) Length-dependent thermal conductivity in suspended single-layer graphene. Nat Commun 5:3689CrossRefGoogle Scholar
  179. 179.
    Yamamoto T, Watanabe K, Mii K (2004) Empirical-potential study of phonon transport in graphitic ribbons. Phys Rev B 70(24):245402CrossRefGoogle Scholar
  180. 180.
    Yang N, Zhang G, Li B (2009) Thermal rectification in asymmetric graphene ribbons. Appl Phys Lett 95(3):033107CrossRefGoogle Scholar
  181. 181.
    Mortazavi B et al (2012) Nitrogen doping and curvature effects on thermal conductivity of graphene: a non-equilibrium molecular dynamics study. Solid State Commun 152(4):261–264CrossRefGoogle Scholar
  182. 182.
    Carrero-Sánchez JC et al (2006) Biocompatibility and toxicological studies of carbon nanotubes doped with nitrogen. Nano Lett 6(8):1609–1616CrossRefGoogle Scholar
  183. 183.
    Zhang H, Lee G, Cho K (2011) Thermal transport in graphene and effects of vacancy defects. Phys Rev B 84(11):115460CrossRefGoogle Scholar
  184. 184.
    Klemens PG, Pedraza DF (1994) Thermal conductivity of graphite in the basal plane. Carbon 32(4):735–741CrossRefGoogle Scholar
  185. 185.
    Subrina S, Kotchetkov D (2008) Simulation of heat conduction in suspended graphene flakes of variable shapes. J Nanoelectron Optoelectron 3:1–21CrossRefGoogle Scholar
  186. 186.
    Areshkin DA, Gunlycke D, White CT (2006) Ballistic transport in graphene nanostrips in the presence of disorder: importance of edge effects. Nano Lett 7(1):204–210CrossRefGoogle Scholar
  187. 187.
    Ouyang Y, Guo J (2009) A theoretical study on thermoelectric properties of graphene nanoribbons. Appl Phys Lett 94(26):093104CrossRefGoogle Scholar
  188. 188.
    Karamitaheri H et al (2012) Engineering enhanced thermoelectric properties in zigzag graphene nanoribbons. J Appl Phys 111(5):093104CrossRefGoogle Scholar
  189. 189.
    Mousavi H, Moradian R (2011) Nitrogen and boron doping effects on the electrical conductivity of graphene and nanotube. Solid State Sci 13(8):1459–1464CrossRefGoogle Scholar
  190. 190.
    Sankeshwar NS, Kubakaddi SS, Mulimani BG (2013) Thermoelectric power in graphene. In: Aliofkhazraei DM (ed) Advances in graphene science. InTech, pp 217–271Google Scholar
  191. 191.
    Bahamon D, Pereira A, Schulz P (2011) Third edge for a graphene nanoribbon: a tight-binding model calculation. Phys Rev B 83(7)Google Scholar
  192. 192.
    Carr LD, Lusk MT (2010) Defect engineering: graphene gets designer defects. Nat Nano 5(5):316–317CrossRefGoogle Scholar
  193. 193.
    Avouris P (2010) Graphene: electronic and photonic properties and devices. Nano Lett 10(11):4285–4294CrossRefGoogle Scholar
  194. 194.
    Jun Y et al (2012) Dual-gated bilayer graphene hot-electron bolometer. Nat Nanotechnol 7(7):472–478CrossRefGoogle Scholar
  195. 195.
    Resistivity, Conductivity and Temperature Coefficients for some Common Materials, 2014 [01/06/2014]. Available from:
  196. 196.
    Wang M et al (2013) A platform for large-scale graphene electronics—CVD growth of single-layer graphene on CVD-grown hexagonal boron nitride. Adv Mater 25(19):2746–2752CrossRefGoogle Scholar
  197. 197.
    Kresse G, Furthmüller J (1996) Efficient iterative schemes for ab initio total energy calculations using a plane-wave basis set. Phys Rev B 54(16):11169–11186CrossRefGoogle Scholar
  198. 198.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868CrossRefGoogle Scholar
  199. 199.
    McCann E, Abergel DSL, Fal’ko VI (2007) Electrons in bilayer graphene. Solid State Commun 143(1–2):110–115CrossRefGoogle Scholar
  200. 200.
    Kravets VG et al (2010) Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption. Phys Rev B 81(15):155413CrossRefGoogle Scholar
  201. 201.
    Yang L et al (2009) Excitonic effects on the optical response of graphene and bilayer graphene. Phys Rev Lett 103(18):186802CrossRefGoogle Scholar
  202. 202.
    Wu L et al (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–14400CrossRefGoogle Scholar
  203. 203.
    Neuer G (1992) Emissivity measurements on graphite and composite materials in visible and infrared spectral range. In: EETI (ed) Quantitative infrared thermography (QIRT) 92. QIRT Archives, ParisGoogle Scholar
  204. 204.
    Zandiatashbar A et al (2014) Effect of defects on the intrinsic strength and stiffness of graphene. Nat Commun 5:3186CrossRefGoogle Scholar
  205. 205.
    Chen J, Zhang G, Li B (2013) Substrate coupling suppresses size dependence of thermal conductivity in supported graphene. Nanoscale 5(2):532–536CrossRefGoogle Scholar
  206. 206.
    Zhong W-R et al (2011) Chirality and thickness-dependent thermal conductivity of few-layer graphene: a molecular dynamics study. Appl Phys Lett 98(11):113107 (4 p)CrossRefGoogle Scholar
  207. 207.
    Guo Z, Zhang D, Gong X-G (2009) Thermal conductivity of graphene nanoribbons. Appl Phys Lett 95(16):163103CrossRefGoogle Scholar
  208. 208.
    Mortazavi B, Ahzi S (2012) Molecular dynamics study on the thermal conductivity and mechanical properties of boron doped graphene. Solid State Commun 152(15):1503–1507CrossRefGoogle Scholar
  209. 209.
    Cooper AJ et al (2014) Single stage electrochemical exfoliation method for the production of few-layer graphene via intercalation of tetraalkylammonium cations. Carbon 66:340–350CrossRefGoogle Scholar
  210. 210.
    Stankovich S et al (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7):1558–1565CrossRefGoogle Scholar
  211. 211.
    Pei S, Cheng H-M (2012) The reduction of graphene oxide. Carbon 50(9):3210–3228CrossRefGoogle Scholar
  212. 212.
    Guermoune A et al (2011) Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors. Carbon 49(13):4204–4210CrossRefGoogle Scholar
  213. 213.
    Liu W et al (2011) Synthesis of high-quality monolayer and bilayer graphene on copper using chemical vapor deposition. Carbon 49(13):4122–4130CrossRefGoogle Scholar
  214. 214.
    Dong X et al (2011) Growth of large-sized graphene thin-films by liquid precursor-based chemical vapor deposition under atmospheric pressure. Carbon 49(11):3672–3678CrossRefGoogle Scholar
  215. 215.
    Wu W et al (2010) Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing. Sens Actuators B Chem 150(1):296–300CrossRefGoogle Scholar
  216. 216.
    Liao L, Duan X (2010) Graphene–dielectric integration for graphene transistors. Mater Sci Eng R Rep 70(3):354–370CrossRefGoogle Scholar
  217. 217.
    Kuilla T et al (2010) Recent advances in graphene based polymer composites. Prog Polym Sci 35(11):1350–1375CrossRefGoogle Scholar
  218. 218.
    Quan Q et al (2017) Graphene and its derivatives as versatile templates for materials synthesis and functional applications. Nanoscale 9(7):2398–2416CrossRefGoogle Scholar
  219. 219.
    Palla P et al (2016) Bandgap engineered graphene and hexagonal boron nitride for resonant tunnelling diode. Bull Mater Sci 39(6):1441–1451CrossRefGoogle Scholar
  220. 220.
    Eftekhari A, Garcia H (2017) The necessity of structural irregularities for the chemical applications of graphene. Mater Today Chem 4:1–16CrossRefGoogle Scholar
  221. 221.
    Tang L et al (2017) Functionalization of graphene by size and doping control and its optoelectronic applicationsGoogle Scholar
  222. 222.
    Shi S et al (2014) Surface engineering of graphene-based nanomaterials for biomedical applications. Bioconjug Chem 25(9):1609–1619CrossRefGoogle Scholar
  223. 223.
    Qu L et al (2017) A versatile graphene foil. J Mater Chem AGoogle Scholar
  224. 224.
    Junqi X et al (2017) Large-area, high-quality monolayer graphene from polystyrene at atmospheric pressure. Nanotechnology 28(15):155605CrossRefGoogle Scholar
  225. 225.
    Kojima E et al (2017) Magnetic field sensor of graphene for automotive applications. SAE InternationalGoogle Scholar
  226. 226.
    Marini A, Cox JD, García de Abajo FJ (2017) Theory of graphene saturable absorption. Phys Rev B 95(12):125408CrossRefGoogle Scholar
  227. 227.
    Bystrov VS et al (2017) Graphene/graphene oxide and polyvinylidene fluoride polymer ferroelectric composites for multifunctional applications. Ferroelectrics 509(1):124–142CrossRefGoogle Scholar
  228. 228.
    Ruhl G et al (2017) The integration of graphene into microelectronic devices. Beilstein J Nanotechnol 8:1056–1064CrossRefGoogle Scholar
  229. 229.
    Dubey N et al (2015) Graphene: a versatile carbon-based material for bone tissue engineering. Stem Cells Int 2015:12CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.DW National Standard Stillwater LLCStillwaterUSA
  2. 2.Interdisciplinary Program in Materials Science & EngineeringNew Jersey Institute of TechnologyNewarkUSA

Personalised recommendations