Processing Techniques

  • Barbara CorteseEmail author
  • Luciano Velardi
  • Ilaria Elena Palamà
  • Stefania D’Amone
  • Eliana D’Amone
  • Gianvito de Iaco
  • Diego Mangiullo
  • Giuseppe Gigli


The semiconductor industry is nowadays under constant pressure to produce devices which are cheaper, smaller, more powerful, and efficient. Moreover, current advances in the production of thin layers have made a whole new range of devices manufacturable. Thin films on substrates are generally prepared using bulk growth methods or physical vapor deposition (PVD) and chemical vapor deposition (CVD). Growth and processing techniques of materials including semiconductors are reviewed in this chapter.


Semiconductor Industry Devices Thin Films Physical Vapor Deposition Chemical Vapor Deposition Czochralski Technique Float-Zone Crystal Growth Epitaxy Diffusion Ion Implantation Self-Assembly RCA Cleaning Vacuum Deposition 


  1. 1.
    Bhat HL (2014) Introduction to crystal growth: principles and practice. CRC Press, Taylor and FrancisCrossRefGoogle Scholar
  2. 2.
    Dhanaraj G, Byrappa K, Prasad V, Dudley M (2010) Springer handbook of crystal growth. Springer, Springer Handbook of Crystal GrowthCrossRefGoogle Scholar
  3. 3.
    Brice JC (1965) The growth of crystals from the melt. Vol. V selected topics in solid state phys. In: Wohlfarth EP (ed) North Holland, AmsterdamGoogle Scholar
  4. 4.
    Lu J, Miao J (2012) Growth mechanism of carbon nanotubes: a nano Czochralski model. Nanoscale Res Lett 7:356CrossRefGoogle Scholar
  5. 5.
    Brice JC (1986) Crystal growth processes. Blackie&Son LtdGoogle Scholar
  6. 6.
    Gilman JJ (1963) The art and science of growing crystals. Wiley, New YorkGoogle Scholar
  7. 7.
    Feigelson RS (1983) In: Kaldis E (ed) Crystal growth of electronic materials. North-Holland, New York, pp 127–145Google Scholar
  8. 8.
    Miyagawa C, Kobayashi T, Taishi T et al (2013) Demonstration of crack-free c-axis sapphire crystal growth using the vertical Bridgman method. J Cryst Growth 372:95–99CrossRefGoogle Scholar
  9. 9.
    Hoshikawa K, Taishi T, Ohba E et al (2014) Vertical Bridgman growth of sapphire crystals, with thin-neck formation process. J Cryst Growth 401:146–149CrossRefGoogle Scholar
  10. 10.
    Wilke K (1988) Kristallzüchtung. In: J. Bohm (ed) VEB Deutscher Verlag der Wissenschaften, BerlinGoogle Scholar
  11. 11.
    Brice JC (1973) The growth of crystals frorn liquids. North-Holland, AmsterdamGoogle Scholar
  12. 12.
    Arthur JR (2002) Molecular beam epitaxy. Surf Sci 500:189–217 CrossRefGoogle Scholar
  13. 13.
    Chambers A (2005) Modern vacuum physics. Chapman & Hall (CRC), Foundations of Vacuum Science and Technology, Wiley-InterscienceGoogle Scholar
  14. 14.
    Knodle WS, Chow R (1988) Molecular beam epitaxy: equipment and practice in handbook of thin film deposition processes and techniques: principles, methods, equipment and applications, 2nd edn. Noyes Publications, Norwich, New York, USA. Ch. 10 Ed Krishna SeshanGoogle Scholar
  15. 15.
    Oura K, Lifshits VG, Saranin AA et al (2003) Surface science: an introduction. Springer, Advanced Texts in PhysicsCrossRefGoogle Scholar
  16. 16.
    Pimpinelli A, Villain J (1998) Physics of crystal growth. Cambridge University Press, Collection Alea-SaclayCrossRefGoogle Scholar
  17. 17.
    Venables JA (2000) Introduction to surface and thin film processes. Cambridge University PressGoogle Scholar
  18. 18.
    Suntola T, Antson J, Pakkala A et al (1980) Atomic layer epitaxy for producing EL-Thin films SID Intern Symposium. Digest Techn Papers 11:108–109Google Scholar
  19. 19.
    George SM (2010) Atomic layer deposition: an overview. Chem Rev 110:111–131CrossRefGoogle Scholar
  20. 20.
    Puurunen RL (2014) A short history of atomic layer deposition: tuomo suntola’s atomic layer epitaxy. Chem Vap Deposition 20:332–344CrossRefGoogle Scholar
  21. 21.
    Ritala M, Leskelä M (2001) Deposition and processing of thin films in handbook of thin film materials. In: Nalwa HS (ed) Vol 1. Academic Press, San DiegoGoogle Scholar
  22. 22.
    Leskela M, Niinisto L (1990) In Atomic Layer Epitaxy. In: Suntola, T, Simpson M (ed) Blackie and Son Ltd., GlasgowGoogle Scholar
  23. 23.
    Nilsen O, Mohn CE, Kjekshus A et al (2007) Analytical model for island growth in atomic layer deposition using geometrical principles. J Appl Phys 102:024906CrossRefGoogle Scholar
  24. 24.
    Puurunen RL (2004) Random deposition as a growth mode in atomic layer deposition. Chem Vap Deposition 10:159–170CrossRefGoogle Scholar
  25. 25.
    Haukka S, Lakomaa EL, Root A (1993) An Ir and NMR study of the chemisorption of TiCl4 on silica. J Phys Chem 97:5085–5094CrossRefGoogle Scholar
  26. 26.
    Matero R, Rahtu A, Ritala M et al (2000) Effect of water dose on the atomic layer deposition rate of oxide thin films. ThinSolid Films 368:1–7CrossRefGoogle Scholar
  27. 27.
    Goodman CHL, Pessa MJ (1986) Atomic layer epitaxy. Appl Phys 60:R65–R81CrossRefGoogle Scholar
  28. 28.
    Nishizawa J, Abe H, Kurabayashi T (1985) Molecular Layer Epitaxy. J Electrochem Soc 132:1197–1200CrossRefGoogle Scholar
  29. 29.
    DenBaars SP, Beyler CA, Hariz A et al (1987) GaAs/AlGaAs quantum well lasers with active regions grown by atomic layer epitaxy. Appl Phys Lett 51:1530–1532CrossRefGoogle Scholar
  30. 30.
    Bedair SM, Tischler MA, Katsuyama T et al (1985) Atomic layer epitaxy of III-V binary compounds. Appl Phys Lett 47:51–53CrossRefGoogle Scholar
  31. 31.
    Tischler MA, Bedair SM (1990) Atomic layer epitay. Blackie and Son Ltd, Glasgow, pp 110–154CrossRefGoogle Scholar
  32. 32.
    Usui A, Sunakawa H (1986) GaAS Atomic layer epitaxy by hydride VPE. Jpn J Appl Phys 25:L212–L214CrossRefGoogle Scholar
  33. 33.
    Konagai M, Sugimoto M, Takahashi K (1978) High efficiency GaAs thin film solar cells by peeled film technology. J Cryst Growth 45:277–280CrossRefGoogle Scholar
  34. 34.
    Yablonovitch E, Gmitter T, Harbison JP et al (1987) Extreme selectivity in the lift-off of epitaxial GaAs films. Appl Phys Lett 51:2222–2224CrossRefGoogle Scholar
  35. 35.
    Bauhuis GJ, Mulder P, Haverkamp EJ et al (2010) Wafer reuse for repeated growth of III-V solar cells. Prog Photovolt Res Appl 18:155–159CrossRefGoogle Scholar
  36. 36.
    Liu LM, Lindauer G, Alexander WB et al (1995) Surface preparation of ZnSe by chemical methods. J Vac Sci Technol B: Microelectron Nanometer Struct 13:2238–2244CrossRefGoogle Scholar
  37. 37.
    Pinel S, Tasselli J, Bailbé JP et al (1998) Mechanical lapping, handling and transfer of ultra-thin wafers. J Micromech Microeng 8:338–342CrossRefGoogle Scholar
  38. 38.
    Rei Vilar M, El Beghdadi J, Debontridder F et al (2005) Characterization of wet-etched GaAs (100) surfaces. Surf Interface Anal 37:673–682CrossRefGoogle Scholar
  39. 39.
    Cheng CW, Shiu KT, Li N et al (2013) Epitaxial lift-off process for gallium arsenide substrate reuse and flexible electronics. Nature Commun 4:1577CrossRefGoogle Scholar
  40. 40.
    Wolf S, Tauber RN (2000) Silicon processing for the VLSI Era. In: Process technology 2nd edn. vol 1. Lattice Press, Sunset Beach, CAGoogle Scholar
  41. 41.
    Caschera D, Cortese B, Mezzi A et al (2013) Ultra hydrophobic/superhydrophilic modified cotton textiles through functionalized Diamond-Like Carbon coatings for self-cleaning applications. Langmuir 29:2775–2783CrossRefGoogle Scholar
  42. 42.
    Cortese B, Caschera D, Federici F et al (2014) Superhydrophobic fabrics For Oil/Water separation through a diamond like carbon (DLC) coating. J Mater. Chem. A 2:6781–6789CrossRefGoogle Scholar
  43. 43.
    Moretti G, Guidi F, Canton R et al (2005) Corrosion protection and mechanical performance of SiO2 films deposited via PECVD on OT59 brass. Anti-Corrosion Methods and Materials 52:266–275CrossRefGoogle Scholar
  44. 44.
    Chapman BN (1980) Glow discharge processes: sputtering and plasma etching. Wiley, New YorkGoogle Scholar
  45. 45.
    Melliar-Smith CM, Mogab CJ (1978) Thin film processes. In: Vossen, JL, Kern W (ed). Academic Press, New York, pp 497–552Google Scholar
  46. 46.
    Acquafredda P, Bisceglie E, Bottalico D et al (2010) Characterization of polycrystalline diamond films grown by Microwave Plasma Enhanced Chemical Vapor Deposition (MWPECVD) for UV radiation detection. Nucl Instrum Methods Phy Res A 617:405–406CrossRefGoogle Scholar
  47. 47.
    Kern W (1986) In microelectronic material and processes. In: Levy RA (eds). Kluwer Academic, New JerseyGoogle Scholar
  48. 48.
    Kern W, Schnable G (1979) Low-pressure chemical vapor deposition for very large-scale integration processing-A review. L IEEE Trans Electron Dev 26:647–657CrossRefGoogle Scholar
  49. 49.
    Stoffel A, Kovács A, Kronast W et al (1996) LPCVD against PECVD for micromechanical applications. J Micromech Microeng 6:20–33CrossRefGoogle Scholar
  50. 50.
    Jaeger RC (1993) Introduction to microelectronic fabrication. Addison-Wesley Publishing Company, IncGoogle Scholar
  51. 51.
    Pierson HO (1992) Handbook of chemical vapor deposition. Noyes Publications, New JerseyGoogle Scholar
  52. 52.
    Fu XA, Dunning J, Zorman CA et al (2004) Development of a high-throughput LPCVD process for depositing low stress poly-SiC. Mater Sci Forum 457–460:305–308CrossRefGoogle Scholar
  53. 53.
    Campbell SA (2001) The science and engineering of microelectronic fabrication. Oxford University Press, New YorkGoogle Scholar
  54. 54.
    Foggiato J (2001) Chemical vapor deposition of silicon dioxide films in handbook of thin film deposition processes and techniques, 2nd edn. Noyes Publications, Norwich, New York, USA, pp 111–150CrossRefGoogle Scholar
  55. 55.
    Gesheva KA, Ivanova TM, Bodurov GK (2014) APCVD Transition metal oxides—functional layers in: smart windows. J Phys Conf Ser 559:012002Google Scholar
  56. 56.
    Kittel C (2005) Introduction to solid state physics. Wiley, IncGoogle Scholar
  57. 57.
    Ohring M (1992) The materials science of thin films. Academic Press, LondonGoogle Scholar
  58. 58.
    Rees WS (1996) Introduction, in CVD of nonmetals. In: Rees WS (ed) Wiley-VCH Verlag GmbH, Weinheim, GermanyGoogle Scholar
  59. 59.
    Krumdieck S (2008) Chemical vapor deposition: precursors and processes. In: Jones A, Hitchman ML (ed) RSC Publishing, Cambridge, UKGoogle Scholar
  60. 60.
    Blocher JM, Vuilland GE, Wahl G (1981) The electrochemical society: pennington. New Jersey, USAGoogle Scholar
  61. 61.
    O’Mara WC, Herring RB, Hunt LP (1990) Handbook of semiconductor silicon technology. Noyes Publications, New Jersey, USAGoogle Scholar
  62. 62.
    Niinisto L, Nieminen M, Päiväsaari J et al (2004) Advanced electronic and optoelectronic materials by atomic layer deposition: an overview with special emphasis on recent progress in processing of high-k dielectrics and other oxide materials. Phys stat sol (a) 201:1443–1452Google Scholar
  63. 63.
    Kleijn CR (2002) Chemical physics of thin film deposition processes for micro- and nano-technologies. In: Pauleau Y (eds) Springer Netherlands, vol 55, pp 119–144Google Scholar
  64. 64.
    Bäuerle D (2000) Laser processing and chemistry. 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  65. 65.
    Scharf T, Krebs HU (2002) Influence of inert gas pressure on deposition rate during pulsed laser deposition. Appl Phys A 75:551–554CrossRefGoogle Scholar
  66. 66.
    Proyer S, Stangl E, Borz M, Hellebrand B, Bauerle D (1996) Particulates on pulsed-laser deposited YBaCuO films. Physica C 257:1–15Google Scholar
  67. 67.
    Bierleutgeb K, Proyer S (1997) Pulsed-laser deposition of Y–Ba–Cu–O films: the influence of fluence and oxygen pressure. Appl Surf Sci 110:331–334CrossRefGoogle Scholar
  68. 68.
    Rani JR, Mahadevan Pillai VP, Ajimsha RS, Jarajaj MK, Jayasree RS (2006) Effect of substrate roughness on photoluminescence spectra of silicon nanocrystals grown by off axis pulsed laser deposition. J Appl Phys 100:014302CrossRefGoogle Scholar
  69. 69.
    Ulman A (1991) An introduction to ultrathin organic films from langmuir-blodgett to self-assembly. Acadamic Press, CaliforniaGoogle Scholar
  70. 70.
    Zharnikov M, Grunze M (2001) Spectroscopic characterization of thiol-derived self-assembled monolayers. J Phys: Condens Matter 13:11333–11365Google Scholar
  71. 71.
    Ulman A (1996) Formation and structure of self-assembled monolayers. Chem. Rev. 96:1533–1554CrossRefGoogle Scholar
  72. 72.
    Bain CD, Evall J, Whitesides GM (1989) Formation of monolayers by the coadsorption of thiols on gold: variation in the head group, tail group, and solvent. J Am Chem Soc 111:7155–7164CrossRefGoogle Scholar
  73. 73.
    Ulman A (1989) Ultrathin organic films: from langmuir-blodgett to self-assembly. J Mat Ed 11:205–207Google Scholar
  74. 74.
    Nakamura T, Miyamae T, Nakai I et al (2005) Adsorption states of dialkyl ditelluride autooxidized monolayers on Au(111). Langmuir 21:3344–3353CrossRefGoogle Scholar
  75. 75.
    Weidner T, Shaporenko A, Müller J et al (2007) Self-assembled monolayers of aromatic tellurides on (111)-oriented gold and silver substrates. J Phys Chem C 111:11627–11635CrossRefGoogle Scholar
  76. 76.
    Watcharinyanon S, Moons E, Johansson LSO (2009) Mixed self-assembled monolayers of ferrocene-terminated and unsubstituted alkanethiols on gold: surface structure and work function. J Phys Chem C 113:1972–1979CrossRefGoogle Scholar
  77. 77.
    Kumar A, Biebuyck HA, Whitesides GM (1994) Patterning self-assembled monolayers: applications in materials science. Langmuir 10:1498–1511CrossRefGoogle Scholar
  78. 78.
    Raynor JE, Capadona JR, Collard DM et al (2009) Polymer brushes and self-assembled monolayers: versatile platforms to control cell adhesion to biomaterials. Biointerphases 4:FA3–16CrossRefGoogle Scholar
  79. 79.
    Tan JL, Tien J, Chen CS (2002) Microcontact printing of proteins on mixed self-assembled monolayers. Langmuir 18:519–523CrossRefGoogle Scholar
  80. 80.
    Cavallini M, Gentili D, Greco P et al (2012) Micro- and nanopatterning by lithographically controlled wetting. Nat Protoc 7:1668–1676CrossRefGoogle Scholar
  81. 81.
    Celio H, Barton E, Stevenson KJ (2006) Patterned assembly of colloidal particles by confined dewetting lithography. Langmuir 22:11426–11435CrossRefGoogle Scholar
  82. 82.
    Toro RG, Caschera D, Palamà IE et al (2015) Unconventional patterning by solvent-assisted surface-tension-driven lithography. J Colloid Interface Sci 446:44–52CrossRefGoogle Scholar
  83. 83.
    Gaines GL Jr (1966) Insoluble monolayers at liquid-gas interfaces. Interscience, New YorkGoogle Scholar
  84. 84.
    Langmuir I (1917) The constitution and fundamental properties of solids and liquids. II Liquids J Am Chem Soc 39:1848–1906CrossRefGoogle Scholar
  85. 85.
    Blodgett K (1935) Films built by depositing successive monomolecular layers on a solid surface. J Am Chem Soc 57:1007–1022CrossRefGoogle Scholar
  86. 86.
    Kuhn H, Möbius D, Bücher H (1972) Spectroscopy of monolayer assemblies. In: Weissberger A, Rossiter B (eds) Physical methods of chemistry, Part III B, vol 1. Wiley, New YorkGoogle Scholar
  87. 87.
    Martin R, Szablewski M (1998) Tensiometers and langmuir-blodgett troughs operating manual, 4 edn. Nima Technology Ltd, The Science Park, Coventry, EnglandGoogle Scholar
  88. 88.
    Lambert K, Capek RK, Bodnarchuk MI et al (2010) Langmuir-schaefer deposition of quantum dot multilayers. Langmuir 26:7732–7736CrossRefGoogle Scholar
  89. 89.
    Langmuir I, Schaefer VJ (1938) Activities of urease and pepsin monolayers. J Am Chem Soc 60:1351–1360CrossRefGoogle Scholar
  90. 90.
    Lee YH, Lee CK, Tan B et al (2013) Using the langmuir-schaefer technique to fabricate large-area dense SERS-active Au nanoprism monolayer films. Nanoscale 5:6404–6412CrossRefGoogle Scholar
  91. 91.
    Kern W (2007) Overview and evolution of silicon wafer cleaning in handbook of silicon wafer cleaning technology, 2nd edn. William Andrew Publishing, Norwich, NYGoogle Scholar
  92. 92.
    Hess DW, Reinhardt KA (2008) Plasma stripping, cleaning and surface conditioning in handbook of silicon wafer cleaning technology, 2nd edn. William Andrew Publishing, Norwich, NY, pp 355–427CrossRefGoogle Scholar
  93. 93.
    Verhaverbeke S, Messoussi R, Morinaga H et al (1995) Recent advances in wet processing technology and science. In: Proceedings Ultra Clean semicond. Processing technology materials research society symposium proceedings, vol. 386, Material research societyGoogle Scholar
  94. 94.
    Kern W (1983) Hydrogen peroxide solutions for silicon wafer cleaning. RCA Eng 28:99–105Google Scholar
  95. 95.
    Kern W (1984) Purifying Si and SiO/sub 2/ surfaces with hydrogen peroxide. Semicond Int 7:94–99Google Scholar
  96. 96.
    Kern W (1990) The evolution of silicon wafer cleaning technology. J Electrochem Soc 137:1887–1892CrossRefGoogle Scholar
  97. 97.
    Shwartzman S, Mayer A, Kern W (1985) Megasonic particle removal from solid state wafers. RCA Review 46:81–105Google Scholar
  98. 98.
    Anttila OJ, Tilli MV, Schaekers M et al (1992) Metal contamination removal on silicon wafers using dilute acidic solutions. J Electrochem Soc 139:1180CrossRefGoogle Scholar
  99. 99.
    Meuris M, Heyns M, Kuper W et al (1991) Correlation of metal impurity content of ulsi chemicals and defect-related breakdown of gate oxides. ULSI Science and Technology, Pennington NJ, Electrochemical Society, pp 141–161Google Scholar
  100. 100.
    Smith SM, Varadarajan M, Christenson K (1996) The effects of dilute SC-1 and SC-2 chemistries on dielectric breakdown dor pre gate cleans in Proceedings fourth international symposium on cleaning technology in semiconductor device manufacturing. The Electrochem. Soc. Pennington, NJGoogle Scholar
  101. 101.
    Ohmi TJ (1996) Total room temperature wet cleaning for si substrate surface. J Electrochem Soc 143:2957–2964CrossRefGoogle Scholar
  102. 102.
    Verhaverbeke S, Alay J, Mertens P et al (1992) Surface characterisation of Si after HF treatments and its influence on the dielectric breakdown of thermal oxides in proceedings on chemical surface preparation, passivation, and cleaning, growth and processing. In: Symposium B., Spring Mtg. of MRS, San FranciscoGoogle Scholar
  103. 103.
    Verhaverbeke HS, Schmidt HF, Meuris M et al (1993) Technology Conference Semicon/Europe ’93, Geneva, SwitzerlandGoogle Scholar
  104. 104.
    Cussler EL (2005) Diffusion, mass transfer in fluid systems, 3rd edn. Cambridge University Press, New YorkGoogle Scholar
  105. 105.
    Poling B, Prausnitz J, O’Connell J (2004) The properties of gases and liquids, 5th edn. McGraw-Hill, New YorkGoogle Scholar
  106. 106.
    Taylor R, Krishna R (1993) Multicomponent mass transfer, 1st edn. Wiley, New York, NYGoogle Scholar
  107. 107.
    Crank J (1975) The mathematics of diffusion. Clarendon Press, OxfordGoogle Scholar
  108. 108.
    Bentzen A, Holt A, Christensen JS et al (2006) High concentration in diffusion of phosphorus in Si from a spray-on source. J Appl Phys 99:064502CrossRefGoogle Scholar
  109. 109.
    Vick G, Whittle K (1969) Solid solubility and diffusion coefficients of boron in silicon. J Electrochem Soc 116:1142–1144CrossRefGoogle Scholar
  110. 110.
    Frank FC, Turnbull D (1956) Mechanism of diffusion of copper in germanium. Phys Rev 104:617CrossRefGoogle Scholar
  111. 111.
    Chason E, Picraux ST, Poate JM et al (1997) Ion beams in silicon processing and characterization. J Appl Phys 81:6513–6561CrossRefGoogle Scholar
  112. 112.
    Parikh NR, Thompson DA, Carpenter GJC (1986) Ion implantation damage in CdS. Radiation Effects 98:289–300CrossRefGoogle Scholar
  113. 113.
    Current MI (1996) Ion implantation for silicon device manufacturing: a vacuum perspective. J Vac Sci Tech A 14:1115–1123CrossRefGoogle Scholar
  114. 114.
    Dearnaley G, Freeman JH, Nelson RS et al (1973) Implantation. American Elsevier Publishing Co., New YorkGoogle Scholar
  115. 115.
    Rimini E (1995) Ion implantation: basics to device fabrication. Kluwer Academic Publishers, BostonCrossRefGoogle Scholar
  116. 116.
    Rubin L, Morris W (1997) High-energy ion implanters and applications take off. Semicond Internat 20:77–85Google Scholar
  117. 117.
    Ryssel H, Ruge I (1986) Ion implantation. Wiley, New YorkGoogle Scholar
  118. 118.
    Ziegler JF (2000) Ion implantation: science and technology. Ion Implant Technology Co., EdgewaterGoogle Scholar
  119. 119.
    Dresselhaus MS, Kalish R (1992) Ion implantation in diamond, Graphite and Related Materials. Springer-Verlag, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  120. 120.
    Ziegler JF (1985) SRIM-stopping and range of ions in matter. Pergamon Press, New YorkGoogle Scholar
  121. 121.
    Chu PK, Qin S, Chan C et al (1996) Plasma immersion ion implantation—a fledgling technique for semiconductor processing. Mater Sci and Eng R 17:207–280CrossRefGoogle Scholar
  122. 122.
    Conrad JR, Radtke JL, Dodd RA, Worzala J, Tran NC (1987) Plasma source ion-implantation technique for surface modification. J Appl Phys 62:4591–4596CrossRefGoogle Scholar
  123. 123.
    Rej DJ, Faehl RJ, Matossian JN (1997) Key issues in plasma-source ion implantation. Surf Coat Technol 96:45–51CrossRefGoogle Scholar
  124. 124.
    Sheuer JT, Shamim M, Conrad JR (1990) Model of plasma source ion implantation in planar, cylindrical, and spherical geometries. J Appl Phys 67:1241–1245CrossRefGoogle Scholar
  125. 125.
    Liberman MA, Lichtenberg AJ (1994) Principles of plasma discharges and material processing. Wiley, New YorkGoogle Scholar
  126. 126.
    Anders A (2000) Handbook of plasma immersion ion implantation. Wiley, New YorkGoogle Scholar
  127. 127.
    Qi B, Lau YY, Gilgenbach RM (2001) Extraction of ions from the matrix sheath in ablation-plasma ion implantation. Appl Phys Lett 78:706–708CrossRefGoogle Scholar
  128. 128.
    Powell CF (1966) Physical vapor deposition. Vapor deposition. In: Powell CF, Oxley JH, Blocher JM Jr(Ed) Wiley, New York, pp 221–248Google Scholar
  129. 129.
    Konuma M (1992) Film deposition by plasma techniques. Springer series on atoms and plasmas. Springer-Verlag, New York, vol 10CrossRefGoogle Scholar
  130. 130.
    Stuart RV (1983) Vacuum technology, thin films, and sputtering. Academic Press, New YorkGoogle Scholar
  131. 131.
    Kern W, Schuegraf KK (1988) Deposition technologies and applications: introduction and overview. handbook of thin-film deposition processes and techniques. In: Schuegraf KK (ed) Park ridge. Noyes, New Jersey, pp 1–25Google Scholar
  132. 132.
    Behrisch R (1983) Topics in applied physics: sputtering by particle bombardment II, vol 47. Springer-Verlag, Berlin, Heidelberg, New YorkCrossRefGoogle Scholar
  133. 133.
    Cuomo JJ, Rossnagel SM, Kaufman HR (1989) Handbook of ion beam processing technology. Noyes PublicationsGoogle Scholar
  134. 134.
    Lieberman MA, Lichtenberg AJ (2005) Principles of plasma discharges and materials processing, 2nd edn. Wiley, Hoboken, pp 308–310CrossRefGoogle Scholar
  135. 135.
    Sproul WD, Christie DJ, Carter DC (2005) Control of reactive sputtering processes. Thin Solid Films 491:1–17CrossRefGoogle Scholar
  136. 136.
    Gibson DR, Brinkley I, Wadell EM et al (2008) Closed field magnetron sputtering: new generation sputtering process for optical coatings. Proc SPIE Int Soc Opt Eng 7101:710108Google Scholar
  137. 137.
    Matthews A (2003) Plasma-based physical vapor deposition surface engineering processes. J Vac Sci Technol, A 21(5):S224–S231CrossRefGoogle Scholar
  138. 138.
    Berg S, Nyberg T (2005) Fundamental understanding and modeling of reactive sputtering processes. Thin Solid Films 476:215–230CrossRefGoogle Scholar
  139. 139.
    Li N, Allain JP, Ruzic DN (2002) Enhancement of aluminum oxide physical vapor deposition with a secondary plasma. Surf Coat Technol 149:161–170CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Barbara Cortese
    • 1
    Email author
  • Luciano Velardi
    • 2
  • Ilaria Elena Palamà
    • 3
  • Stefania D’Amone
    • 3
  • Eliana D’Amone
    • 3
  • Gianvito de Iaco
    • 3
  • Diego Mangiullo
    • 3
  • Giuseppe Gigli
    • 3
    • 4
    • 5
  1. 1.Nanotechnology Institute, CNR-NANOTECUniversity La SapienzaRomeItaly
  2. 2.P.LAS.M.I Lab@Bari, Nanotechnology Institute, CNR-NANOTECBariItaly
  3. 3.Nanotechnology Institute, CNR-NANOTECLecceItaly
  4. 4.Department Matematica e Fisica ‘Ennio De Giorgi’University of SalentoLecceItaly
  5. 5.Italian Institute of Technology (IIT)—Center for Biomolecular NanotechnologiesArnesanoItaly

Personalised recommendations