Advertisement

Semiconductor Fundamentals

  • P. HorleyEmail author
  • P. J. Gonçalves Ribeiro
  • J. A. Aguilar Martínez
  • V. J. Rocha Vieira
Chapter

Abstract

In this chapter, the core theoretical concepts of solid-state physics are discussed. It begins with a quantum mechanical description of the fundamental constituents of solid-state matter: electrons and atoms. Subsequently, using a free electron gas picture, the description of the Fermi–Dirac statistics entailing the appearance of the Fermi surface and deducing the consequences from some thermodynamic properties of metals such as the specific heat capacity is presented. Then the notion of Bloch functions, arising for electrons in the periodic potential of a crystalline lattice that leads to the appearance of allowed and forbidden energy bands is introduced. This effect is illustrated using the one-dimensional Kronig–Penney model. If the chemical potential lies within an energy forbidden region—called band gap—a finite energy is needed to produce conduction electrons. This explains why an important class of materials are insulators. Nonetheless, when enough energy is provided to the sample to bridge the band gap, electron-hole pairs are generated. The subsequent relaxation to the equilibrium state is done through a set of various recombination mechanisms. The ordered motion of the carriers can be used for effective transport of charge and heat. Important transport phenomena such as carrier drift under applied electric field, carrier precession caused by magnetic field, and carrier motion in thermal gradients are investigated. For an illuminated semiconductor, transmittance, reflectance, and absorptance, leading to photoconductive and photovoltaic effects are discussed in detail.

Keywords

Solid-State Physics Quantum Mechanics Electrons Atoms Fermi-Dirac Statistics Fermi Surface Thermodynamic Properties Metals Bloch Function Kronig-Penney Model Band Gap 

References

  1. 1.
    Ashcroft NW, Mermin ND (1976) Solid state physics. Holt, Rinehart and Winston, Brooks Cole, New YorkGoogle Scholar
  2. 2.
    Gasiorowicz S (2003) Quantum physics. Wiley, HobokenGoogle Scholar
  3. 3.
    Eisberg R, Resnick R (1985) Quantum physics of atoms, molecules, solids, nuclei, and particles. Wiley, HobokenGoogle Scholar
  4. 4.
    Fox M (2010) Optical properties of solids. Oxford University Press, OxfordGoogle Scholar
  5. 5.
    Kittel C (2005) Introduction to solid state physics. Wiley, HobokenGoogle Scholar
  6. 6.
    Li S (2006) Semiconductor physical electronics. Springer, New YorkCrossRefGoogle Scholar
  7. 7.
    Miller D (2008) Quantum mechanics for scientists and engineers. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  8. 8.
    Schäfer W, Wegener M (2002) Semiconductor optics and transport phenomena. Springer, BerlinCrossRefGoogle Scholar
  9. 9.
    Shalimova KV (1985) Physics of semiconductors. Energoatomizdat, MoscowGoogle Scholar
  10. 10.
    Singh J (2007) Electronic and optoelectronic properties of semiconductor structures. Cambridge University Press, CambridgeGoogle Scholar
  11. 11.
    Sze SM, Ng KK (2007) Physics of semiconductor devices. Wiley, HobokenGoogle Scholar
  12. 12.
    Yu P, Cardona M (2010) Fundamentals of semiconductors: physics and materials properties. Springer, BerlinCrossRefGoogle Scholar
  13. 13.
    Ziman JM (1979) Principles of the theory of solids. Cambridge University Press, CambridgeGoogle Scholar
  14. 14.
    Ziman JM (1995) Elements of advanced quantum theory. Cambridge University Press, CambridgeGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • P. Horley
    • 1
    Email author
  • P. J. Gonçalves Ribeiro
    • 2
    • 3
  • J. A. Aguilar Martínez
    • 4
  • V. J. Rocha Vieira
    • 2
  1. 1.Centro de Investigación en Materiales Avanzados CIMAV S.C.Unidad Monterrey, Parque de Investigación e Innovación TecnológicaApodacaMexico
  2. 2.Centro de Física e Engenharia de Materiais Avançados (CeFEMA), Departamento de Física, Instituto Superior TécnicoUniversidade de LisboaLisboaPortugal
  3. 3.Russian Quantum CenterSkolkovoRussia
  4. 4.Universidad Autónoma de Nuevo León, Facultad de Ingeniería Mecánica y Eléctrica (FIME), Centro de Investigación e Innovación en Ingeniería Aeronáutica (CIIIA), Aeropuerto Internacional del NorteApodacaMexico

Personalised recommendations