Advertisement

Hybrid Impulsive and Switching Control and Its Application to Nonlinear Systems

  • Zhi-Hong Guan
  • Bin Hu
  • Xuemin (Sherman) Shen
Chapter

Abstract

Hybrid control systems have shown strong evidence in both nature and engineering. Before the investigation of hybrid multi-agent networks, this chapter reviews the hybrid impulsive and switching control methods and their application to nonlinear systems. This chapter produces basic rules for designing hybrid impulsive and switching control that would be useful for the subsequent chapters.

References

  1. 1.
    J. P. Aubin, J. Lygeros, M. Quincampoix, S. Sastry, and N. Seube, “Impulse differential inclusions: A viability approach to hybrid systems,” IEEE Trans. on Automat. Contr., vol.47, no.1, pp.1–20, Jan. 2001.MathSciNetzbMATHGoogle Scholar
  2. 2.
    D. D. Bainov and P. S. Simeonov, Stability Theory of Differential Equations with Impulse Effect: Theory and Applications. Chichester: Ellis Horwood, 1989.Google Scholar
  3. 3.
    D. Chen, J. Sun, and Q. Wu, “Impulsive control and its application to Lu’s chaotic system”, Chaos, Solitons & Fractals, vol.21, pp.1135–1142, 2004.MathSciNetCrossRefGoogle Scholar
  4. 4.
    R. A. Decarlo, M. S. Branicky, S. Pettersson, and B. Lennartson, “Perspective and results on the stability and stabilizability of hybrid systems,” Proc. IEEE, vol.88, pp.1069–1082, July, 2000.CrossRefGoogle Scholar
  5. 5.
    Z. H. Guan, G. Chen, and T. Ueta, “On impulsive control of a periodically forced chaotic pendulum system,” IEEE Trans. on Automatic Control, vol.45, no.9, pp.1724–1727, Sep. 2000.MathSciNetCrossRefGoogle Scholar
  6. 6.
    J. P. Hespanha and A. S. Morse, “Stability of switched systems with average dwell-time,” in Proc. 38th Conf. Decision and Control, 1999, pp.2655–2660.Google Scholar
  7. 7.
    W. M. Haddad, V. Chellaboina, and N. A. Kablar, “Nonlinear impulsive dynamical systems, Part I, II, Int. J. Contr., vol.74, no.17, pp.1631–1677, 2001.CrossRefGoogle Scholar
  8. 8.
    L. Huang, Linear Algebra in Systems and Control Theory, Beijing: Science Press, 1984, pp.211–214.Google Scholar
  9. 9.
    A. Khadra, X. Liu, and X. Shen, “Application of impulsive synchronization to communication security,” IEEE Trans. on Circuits and Systems, vol.50, no.3, pp.341–350, Mar. 2003.MathSciNetCrossRefGoogle Scholar
  10. 10.
    S. Leela, F. A. McRae, and S. Sivasundaram, “Controllability of impulsive differential equations,” J. Math. Anal. Appl., vol.177, no.1, 1993.MathSciNetCrossRefGoogle Scholar
  11. 11.
    Z. G. Li, C. B. Soh, and X. H. Xu, “Lyapunov stability for a class of hybrid dynamic systems,” Automatica, vol.36, pp.297–302, 2000.MathSciNetCrossRefGoogle Scholar
  12. 12.
    Z. G. Li, Y. C. Soh, and C. Y. Wen, “Robust stability of a class of hybrid nonlinear systems,” IEEE Trans. on Automatic Control, vol.46, no.6, pp.897–903, June 2002.MathSciNetCrossRefGoogle Scholar
  13. 13.
    Z. G. Li, C. Y. Wen, and Y. C. Soh, “Analysis and design of impulsive control systems”, IEEE Trans. on Automatic Control, vol.46, no.6, pp.894–897, June 2001.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Z. G. Li, Y. C. Soh, and C. Y. Wen, “Robust stability of quasi-periodic hybrid dynamic uncertain systems”, IEEE Trans. on Automatic Control, vol.46, no.1, pp.107–111, January 2001.MathSciNetCrossRefGoogle Scholar
  15. 15.
    Z. G. Li, Y. C. Soh, and C. Y. Wen, “Stability of uncertain quasi-periodic hybrid dynamic systems”, Int. J. Control, vol.73, no.1, pp.63–73, 2000.MathSciNetCrossRefGoogle Scholar
  16. 16.
    D. Liberzon, Switching in Systems and Control. Boston, MA : Birkhauser, 2003.CrossRefGoogle Scholar
  17. 17.
    A. N. Michel, “Recent trends in the stability analysis of hybrid dynamical systems,” IEEE Trans. on Circuits and Systems, vol.46, no.1, pp.120–134, 1999.MathSciNetCrossRefGoogle Scholar
  18. 18.
    T. Yang, Impulsive Control Theory, Berlin: Springer, 2001.zbMATHGoogle Scholar
  19. 19.
    H. Ye, A. N. Michel, and L. Hou, “Stability theory for hybrid dynamical systems”, IEEE Trans. on Automatic Control, vol.43, no.4, pp.461–474, April, 1998.MathSciNetCrossRefGoogle Scholar
  20. 20.
    G. Chen and X. Dong, From Chaos to Order: Methodologies, Perspectives, and Applications, World Scientific Pub. Co., Singapore, 1998.CrossRefGoogle Scholar
  21. 21.
    T. Ueta, H. Kawakami, and I. Morita, “A study of the pendulum equation with a periodic impulsive force–bifurcation and control,” IEICE Trans. Fundamentals, Vol.E78-A, pp. 1269–1275, 1995.Google Scholar
  22. 22.
    J. A. K. Suykens, T. Yang, J. Vandewalle, and L. O. Chua, “Impulsive control and synchronization of chaos,” in Controlling Chaos and Bifurcations in Engineering Systems, G. Chen (Ed.), CRC Press, Boca Raton, FL, USA, 1999, pp. 275–298.Google Scholar
  23. 23.
    S. G. Pandit and S. G. Deo, Differential Systems Involving Impulses. New York: Springer, 1982.CrossRefGoogle Scholar
  24. 24.
    V. Lakshmikantham, D. D. Bainov, and P. S. Simeonov, Theory of Impulse Differential Equations. Singapore: World Scientific, 1989.CrossRefGoogle Scholar
  25. 25.
    Y. Q. Liu and Z. H. Guan, Stability, Stabilization and Control of Measure Large-Scale Systems with Impulses. Guangzhou: The South China University of Technology Press, 1996.Google Scholar
  26. 26.
    D. D. Bainov and P. S. Simeonov, Stability Theory of Differential Equations with Impulse Effect: Theory and Applications. Chichester: Ellis Horwood, 1989.Google Scholar
  27. 27.
    X. F. Wang and G. Chen, “Chaotification via arbitrarily small feedback controls: Theory, method, and applications,” Int. J. Bifurcation and Chaos, vol. 10, pp. 549–570, 2000.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Zhi-Hong Guan
    • 1
  • Bin Hu
    • 2
  • Xuemin (Sherman) Shen
    • 3
  1. 1.College of AutomationHuazhong University of Science and TechnologyWuhanChina
  2. 2.Wuhan National Laboratory For OptoelectronicsHuazhong University of Science and TechnologyWuhanChina
  3. 3.Electrical and Computer Engineering DepartmentUniversity of WaterlooWaterlooCanada

Personalised recommendations