Advertisement

Nonsymmetric Operads

  • Samuele Giraudo
Chapter

Abstract

This chapter introduces nonsymmetric operads. Our presentation relies on the framework of graded collections and graded spaces introduced in the previous chapters. We consider here also set-operads, algebras over operads, free operads, presentations by generators and relations, Koszul duality and Koszulity of operads. At the end of the chapter, several examples of operads on a large family of combinatorial collections are provided.

References

  1. [AL07]
    M. Aguiar, M. Livernet, The associative operad and the weak order on the symmetric groups. J. Homotopy Relat. Str. 2(1), 57–84 (2007)MathSciNetzbMATHGoogle Scholar
  2. [AP17]
    J. Alm, D. Petersen, Brown’s dihedral moduli space and freedom of the gravity operad. Ann. Sci. Éc. Norm. Supér. 50(5), 1081–1122 (2017)MathSciNetCrossRefGoogle Scholar
  3. [BGS82]
    A. Björner, A.M. Garsia, R.P. Stanley, An Introduction to Cohen-Macaulay Partially Ordered Sets. Nato Science Series C: - Mathematical and Physical Sciences, vol. 83 (Reidel, Dordrecht 1982)Google Scholar
  4. [BL10]
    N. Bergeron, M. Livernet, The non-symmetric operad pre-Lie is free. J. Pure Appl. Algebra 214(7), 1165–1172 (2010)MathSciNetCrossRefGoogle Scholar
  5. [BV73]
    J.M. Boardman, R.M. Vogt, Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, vol. 347 (Springer, Berlin, 1973)CrossRefGoogle Scholar
  6. [CCG18]
    C. Chenavier, C. Cordero, S. Giraudo, Generalizations of the associative operad and convergent rewrite systems. Higher Dimens. Rewriting Algebra (2018). https://doi.org/10.29007/mfnh
  7. [CCM11]
    P. Caron, J.-C. Champarnaud, L. Mignot, Multi-bar and multi-tilde regular operators. J. Autom. Lang. Comb. 16(1), 11–26 (2011)MathSciNetzbMATHGoogle Scholar
  8. [CG14]
    F. Chapoton, S. Giraudo, Enveloping operads and bicoloured noncrossing configurations. Exp. Math. 23(3), 332–349 (2014)MathSciNetCrossRefGoogle Scholar
  9. [Cha05]
    F. Chapoton, On some anticyclic operads. Algebr. Geom. Topol. 5, 53–69 (2005)MathSciNetCrossRefGoogle Scholar
  10. [Cha06]
    F. Chapoton, Sur le nombre d’intervalles dans les treillis de Tamari. Sém. Lothar. Combin. B55f, 18 (2006)Google Scholar
  11. [Cha07]
    F. Chapoton, The anticyclic operad of moulds. Int. Math. Res. Not. 20, 1–36 (2007); Art. ID rnm078Google Scholar
  12. [Cha08]
    F. Chapoton, Operads and algebraic combinatorics of trees. Sém. Lothar. Combin. B58c, 27 (2008)Google Scholar
  13. [Cha14]
    F. Chapoton, Flows on rooted trees and the Menous-Novelli-Thibon idempotents. Math. Scand. 115(1), 20–61 (2014)MathSciNetCrossRefGoogle Scholar
  14. [CL01]
    F. Chapoton, M. Livernet, Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not. 8, 395–408 (2001)MathSciNetCrossRefGoogle Scholar
  15. [CL07]
    F. Chapoton, M. Livernet, Relating two Hopf algebras built from an operad. Int. Math. Res. Not. 2007(24), 1–27 (2007); Art. ID rnm131Google Scholar
  16. [DK10]
    V. Dotsenko, A. Khoroshkin, Gröbner bases for operads. Duke Math. J. 153(2), 363–396 (2010)MathSciNetCrossRefGoogle Scholar
  17. [Ger63]
    M. Gerstenhaber, The cohomology structure of an associative ring. Ann. Math. 78, 267–288 (1963)MathSciNetCrossRefGoogle Scholar
  18. [Get94]
    E. Getzler, Two-dimensional topological gravity and equivariant cohomology. Commun. Math. Phys. 163(3), 473–489 (1994)MathSciNetCrossRefGoogle Scholar
  19. [Gir15]
    S. Giraudo, Combinatorial operads from monoids. J. Algebra Comb. 41(2), 493–538 (2015)MathSciNetCrossRefGoogle Scholar
  20. [Gir16b]
    S. Giraudo, Operads from posets and Koszul duality. Eur. J. Comb. 56C, 1–32 (2016)MathSciNetCrossRefGoogle Scholar
  21. [Gir16c]
    S. Giraudo, Pluriassociative algebras I: the pluriassociative operad. Adv. Appl. Math. 77, 1–42 (2016)MathSciNetCrossRefGoogle Scholar
  22. [Gir17]
    S. Giraudo, Combalgebraic structures on decorated cliques, in Formal Power Series and Algebraic Combinatorics (2017)Google Scholar
  23. [GK94]
    V. Ginzburg, M.M. Kapranov, Koszul duality for operads. Duke Math. J. 76(1), 203–272 (1994)MathSciNetCrossRefGoogle Scholar
  24. [GLMN16]
    S. Giraudo, J.-G. Luque, L. Mignot, F. Nicart, Operads, quasiorders, and regular languages. Adv. Appl. Math. 75, 56–93 (2016)MathSciNetCrossRefGoogle Scholar
  25. [Hof10]
    E. Hoffbeck, A Poincaré-Birkhoff-Witt criterion for Koszul operads. Manuscripta Math. 131(1-2), 87–110 (2010)MathSciNetCrossRefGoogle Scholar
  26. [Ler11]
    P. Leroux, L-algebras, triplicial-algebras, within an equivalence of categories motivated by graphs. Comm. Algebra 39(8), 2661–2689 (2011)MathSciNetCrossRefGoogle Scholar
  27. [Liv06]
    M. Livernet, A rigidity theorem for pre-Lie algebras. J. Pure Appl. Algebra 207(1), 1–18 (2006)MathSciNetCrossRefGoogle Scholar
  28. [LMN13]
    J.-G. Luque, L. Mignot, F. Nicart, Some combinatorial operators in language theory. J. Autom. Lang. Comb. 18(1), 27–52 (2013)MathSciNetzbMATHGoogle Scholar
  29. [Lod96]
    J.-L. Loday, La renaissance des opérades. Séminaire Bourbaki 37(792), 47–74 (1996)zbMATHGoogle Scholar
  30. [Lod01]
    J.-L. Loday, Dialgebras, in Dialgebras and Related Operads. Lecture Notes in Mathematics, vol. 1763 (Springer, Berlin, 2001), pp. 7–66Google Scholar
  31. [Lod05]
    J.-L. Loday, Inversion of integral series enumerating planar trees. Sém. Lothar. Combin. 53, 16 (2005); Art. B53dGoogle Scholar
  32. [Lod08]
    J.-L. Loday, Generalized bialgebras and triples of operads. Astérisque 320, 1–114 (2008)MathSciNetzbMATHGoogle Scholar
  33. [Lod10]
    J.-L. Loday, On the operad of associative algebras with derivation. Georgian Math. J. 17(2), 347–372 (2010)MathSciNetzbMATHGoogle Scholar
  34. [LR03]
    J.-L. Loday, M. Ronco, Algèbres de Hopf colibres. C. R. Math. 337(3), 153–158 (2003)MathSciNetCrossRefGoogle Scholar
  35. [LR04]
    J.-L. Loday, M. Ronco, Trialgebras and families of polytopes, in Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-Theory. Contemporary Mathematics, vol. 346 (American Mathematical Society, Providence, 2004), pp. 369–398Google Scholar
  36. [LR06]
    J.-L. Loday, M. Ronco, On the structure of cofree Hopf algebras. J. Reine Angew. Math. 592, 123–155 (2006)MathSciNetzbMATHGoogle Scholar
  37. [LV12]
    J.-L. Loday, B. Vallette, Algebraic Operads. Grundlehren der mathematischen Wissenschaften, vol. 346 (Springer, Heidelberg, 2012), pp. xxiv+634CrossRefGoogle Scholar
  38. [Mar08]
    M. Markl, Operads and PROPs, in Handbook of Algebra, vol. 5 (Elsevier/North-Holland, Amsterdam, 2008), pp. 87–140zbMATHGoogle Scholar
  39. [May72]
    J.P. May, The Geometry of Iterated Loop Spaces. Lectures Notes in Mathematics, vol. 271 (Springer, Berlin, 1972), pp. viii+175Google Scholar
  40. [Mén15]
    M.A. Méndez, Set Operads in Combinatorics and Computer Science. SpringerBriefs in Mathematics (Springer, Cham, 2015), pp. xvi+129Google Scholar
  41. [MY91]
    M. Méndez, J. Yang, Möbius species. Adv. Math. 85(1), 83–128 (1991)MathSciNetCrossRefGoogle Scholar
  42. [Pri70]
    S.B. Priddy, Koszul resolutions. Trans. Am. Math. Soc. 152, 39–60 (1970)MathSciNetCrossRefGoogle Scholar
  43. [Saï14]
    A. Saïdi, The pre-Lie operad as a deformation of NAP. J. Algebra Appl. 13(1), 23 (2014)MathSciNetCrossRefGoogle Scholar
  44. [Slo]
    N.J.A. Sloane, The on-line encyclopedia of integer sequences (1996). https://oeis.org/
  45. [Val07]
    B. Vallette, Homology of generalized partition posets. J. Pure Appl. Algebra 208(2), 699–725 (2007)MathSciNetCrossRefGoogle Scholar
  46. [Yau16]
    D. Yau, Colored Operads. Graduate Studies in Mathematics (American Mathematical Society, Providence, 2016)Google Scholar
  47. [Zin12]
    G.W. Zinbiel, Encyclopedia of types of algebras 2010, in Operads and Universal Algebra. Nankai Series in Pure, Applied Mathematics and Theoretical Physics, vol. 9 (World Scientific Publishing, Hackensack, 2012), pp. 217–297Google Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Samuele Giraudo
    • 1
  1. 1.University of Paris-EstMarne-la-ValleeFrance

Personalised recommendations