Advertisement

Algebraic Structures

  • Samuele Giraudo
Chapter

Abstract

This chapter deals with vector spaces obtained from graded collections. A general framework for algebraic structures having products and coproducts is presented. Most of the algebraic structures encountered in algebraic combinatorics like associative, dendriform, pre-Lie algebras, and Hopf bialgebras fit into this framework. This chapter contains classical examples of such structures.

References

  1. [Agu00]
    M. Aguiar, Pre-Poisson algebras. Lett. Math. Phys. 54(4), 263–277 (2000)MathSciNetCrossRefGoogle Scholar
  2. [AL04]
    M. Aguiar, J.-L. Loday, Quadri-algebras. J. Pure Appl. Algebra 191(3), 205–221 (2004)MathSciNetCrossRefGoogle Scholar
  3. [BDO18]
    E. Burgunder, B. Delcroix-Oger, Confluence laws and Hopf-Borel type theorem for operads (2018). arXiv:1701.01323v2
  4. [BF03]
    C. Brouder, A. Frabetti, QED Hopf algebras on planar binary trees. J. Algebra 1, 298–322 (2003)MathSciNetCrossRefGoogle Scholar
  5. [Cha02]
    F. Chapoton, Un théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendriformes et les algèbres braces. J. Pure Appl. Algebra 168(1), 1–18 (2002)MathSciNetCrossRefGoogle Scholar
  6. [Cha08]
    F. Chapoton, Operads and algebraic combinatorics of trees. Sém. Lothar. Combin. B58c, 27 (2008)Google Scholar
  7. [CL01]
    F. Chapoton, M. Livernet, Pre-Lie algebras and the rooted trees operad. Int. Math. Res. Not. 8, 395–408 (2001)MathSciNetCrossRefGoogle Scholar
  8. [CP17]
    G. Châtel, V. Pilaud, Cambrian Hopf algebras. Adv. Math. 311, 598–633 (2017)MathSciNetCrossRefGoogle Scholar
  9. [DHT02]
    G. Duchamp, F. Hivert, J.-Y. Thibon, Noncommutative symmetric functions VI: free quasi- symmetric functions and related algebras. Int. J. Algebra Comput. 12, 671–717 (2002)MathSciNetCrossRefGoogle Scholar
  10. [EFM09]
    K. Ebrahimi-Fard, D. Manchon, Dendriform equations. J. Algebra 322(11), 4053–4079 (2009)MathSciNetCrossRefGoogle Scholar
  11. [EFMP08]
    K. Ebrahimi-Fard, D. Manchon, F. Patras, New identities in dendriform algebras. J. Algebra 320(2), 708–727 (2008)MathSciNetCrossRefGoogle Scholar
  12. [Foi07]
    L. Foissy, Bidendriform bialgebras, trees, and free quasi-symmetric functions. J. Pure Appl. Algebra 209(2), 439–459 (2007)MathSciNetCrossRefGoogle Scholar
  13. [Foi12]
    L. Foissy, Ordered forests and parking functions. Int. Math. Res. Not. 2012(7), 1603–1633 (2012)MathSciNetCrossRefGoogle Scholar
  14. [Foi15]
    L. Foissy, Examples of Com-PreLie Hopf algebras. arXiv:1501.06375v1 (2015)
  15. [Ger63]
    M. Gerstenhaber, The cohomology structure of an associative ring. Ann. Math. 78, 267–288 (1963)MathSciNetCrossRefGoogle Scholar
  16. [Gir12]
    S. Giraudo, Algebraic and combinatorial structures on pairs of twin binary trees. J. Algebra 360, 115–157 (2012)MathSciNetCrossRefGoogle Scholar
  17. [Gir16c]
    S. Giraudo, Pluriassociative algebras I: the pluriassociative operad. Adv. Appl. Math. 77, 1–42 (2016)MathSciNetCrossRefGoogle Scholar
  18. [Gir16d]
    S. Giraudo, Pluriassociative algebras II: the polydendriform operad and related operads. Adv. Appl. Math. 77, 43–85 (2016)MathSciNetCrossRefGoogle Scholar
  19. [GKL+95]
    I.M. Gelfand, D. Krob, A. Lascoux, B. Leclerc, V.S. Retakh, J.-Y. Thibon, Noncommutative symmetric functions I. Adv. Math. 112, 218–348 (1995)MathSciNetCrossRefGoogle Scholar
  20. [Hiv99]
    F. Hivert, Combinatoire des fonctions quasi-symétriques, Ph.D. thesis, Université de Marne-la-Vallée (1999)Google Scholar
  21. [Hiv03]
    F. Hivert, An Introduction to Combinatorial Hopf Algebras (IOS Press, Amsterdam, 2003)Google Scholar
  22. [HNT05]
    F. Hivert, J.-C. Novelli, J.-Y. Thibon, The algebra of binary search trees. Theor. Comput. Sci. 339(1), 129–165 (2005)MathSciNetCrossRefGoogle Scholar
  23. [Ler04]
    P. Leroux, Ennea-algebras. J. Algebra 281(1), 287–302 (2004)MathSciNetCrossRefGoogle Scholar
  24. [Ler07]
    P. Leroux, A simple symmetry generating operads related to rooted planar m-ary trees and polygonal numbers. J. Integer Seq. 10(4), 1–23 (2007), Article 07.4.7Google Scholar
  25. [Liv06]
    M. Livernet, A rigidity theorem for pre-Lie algebras. J. Pure Appl. Algebra 207(1), 1–18 (2006)MathSciNetCrossRefGoogle Scholar
  26. [Lod01]
    J.-L. Loday, Dialgebras, in Dialgebras and Related Operads. Lecture Notes in Mathematics, vol. 1763 (Springer, Berlin, 2001), pp. 7–66Google Scholar
  27. [Lod02]
    J.-L. Loday, Arithmetree. J. Algebra 258(1), 275–309 (2002); Special issue in celebration of Claudio Procesi’s 60th birthdayGoogle Scholar
  28. [Lod08]
    J.-L. Loday, Generalized bialgebras and triples of operads. Astérisque 320, 1–114 (2008)MathSciNetzbMATHGoogle Scholar
  29. [LR98]
    J.-L. Loday, M. Ronco, Hopf algebra of the planar binary trees. Adv. Math. 139, 293–309 (1998)MathSciNetCrossRefGoogle Scholar
  30. [LR04]
    J.-L. Loday, M. Ronco, Trialgebras and families of polytopes, in Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-Theory. Contemporary Mathematics, vol. 346 (American Mathematical Society, Providence, 2004), pp. 369–398Google Scholar
  31. [LR12]
    S. Law, N. Reading, The Hopf algebra of diagonal rectangulations. J. Comb. Theory A 119(3), 788–824 (2012)MathSciNetCrossRefGoogle Scholar
  32. [LV12]
    J.-L. Loday, B. Vallette, Algebraic Operads. Grundlehren der mathematischen Wissenschaften, vol. 346 (Springer, Heidelberg, 2012), pp. xxiv+634CrossRefGoogle Scholar
  33. [Mac15]
    I.G. Macdonald, Symmetric Functions and Hall Polynomials. Oxford Classic Texts in the Physical Sciences, 2nd edn. (Oxford University Press, Oxford, 2015)Google Scholar
  34. [Man11]
    D. Manchon, A short survey on pre-Lie algebras, in Noncommutative Geometry and Physics: Renormalisation, Motives, Index Theory. ESI Lectures in Mathematics and Physics. (European Mathematical Society, Zürich, 2011), pp. 89–102Google Scholar
  35. [MR95]
    C. Malvenuto, C. Reutenauer, Duality between quasi-symmetric functions and the Solomon descent algebra. J. Algebra 177(3), 967–982 (1995)MathSciNetCrossRefGoogle Scholar
  36. [Nov14]
    J.-C. Novelli, m-dendriform algebras (2014). arXiv:1406.1616v1
  37. [NT07]
    J.-C. Novelli, J.-Y. Thibon, Hopf algebras and dendriform structures arising from parking functions. Fundam. Math. 193, 189–241 (2007)MathSciNetCrossRefGoogle Scholar
  38. [PR95]
    S. Poirier, C. Reutenauer, Algèbres de Hopf de tableaux. Ann. Sci. Math. Québec 19, 79–90 (1995)MathSciNetzbMATHGoogle Scholar
  39. [Ree58]
    R. Ree, Lie elements and an algebra associated with shuffles. Ann. Math. 68(2), 210–220 (1958)MathSciNetCrossRefGoogle Scholar
  40. [Rey07]
    M. Rey, Algebraic constructions on set partitions, in Formal Power Series and Algebraic Combinatorics (2007)Google Scholar
  41. [Rot64]
    G.-C. Rota, On the foundations of combinatorial theory. I. Theory of Möbius functions. Z. Wahrscheinlichkeit 2, 340–368 (1964)zbMATHGoogle Scholar
  42. [Sta11]
    R.P. Stanley, Enumerative Combinatorics, 2nd edn., vol. 1 (Cambridge University Press, Cambridge, 2011)CrossRefGoogle Scholar
  43. [Vin63]
    È.B. Vinberg, The theory of homogeneous convex cones. Trudy Moskov. Mat. Obšč. 12, 303–358 (1963)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Samuele Giraudo
    • 1
  1. 1.University of Paris-EstMarne-la-ValleeFrance

Personalised recommendations