Advertisement

Science and Ethics in the Exploration of Mars

  • Gonzalo MunévarEmail author
Chapter
Part of the Space and Society book series (SPSO)

Abstract

The scientific exploration of Mars might yield results of extraordinary importance for our own planet, particularly the search for extant or fossil Martian life, which would make it possible to understand terrestrial life in a more profound way. This potential scientific treasure places on us an ethical obligation to minimize the disruption of the Martian environment until our scientific exploration has been greatly advanced. We also have ethical obligations to the human scientific explorers of Mars, ethical obligations that require a series of scientific investigations, e.g., about how the low Martian gravitation may affect those explorers’ physiology.

References

  1. Bylinsky, G. (1981). Life in Darwin’s universe. Doubleday.Google Scholar
  2. Cairns-Smith, A. G. (2009). An approach to a blueprint for a primitive organism. In C. H. Waddington (Ed.), The origin of life: Towards a theoretical biology, 1 (pp. 57–66) Aldine Transaction. ISBN 978-0-202-36302-8.Google Scholar
  3. Carr, M. (2004). The proof is in: Ancient water on Mars. The Planetary Report, 24(3), 11.Google Scholar
  4. de Duve, C. (2002). Life evolving. Oxford University Press.Google Scholar
  5. de Duve, C. (2005). Singularities. Cambridge University Press.Google Scholar
  6. Dorminey, B. (2009). Without the Moon, would there be life on Earth? Scientific American, 21.Google Scholar
  7. Experiments on Plants Grown in Space. (1984). Annals of Botany, 54(Suppl. 3).Google Scholar
  8. Fabricant, J. D. (Ed.). (1983). The fabricant report on life sciences experiments for a space station. Galveston, Texas: University of Texas Medical Branch.Google Scholar
  9. Forget, F., Wordsworth, R., Millour, E., Madeleine, J.-B., Kerber, L., Leconte, J., et al. (2013). 3D modelling of the early martian climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds. Icarus, 222, 81–99.ADSCrossRefGoogle Scholar
  10. Gravitational and Space Research (2013). 1(1).Google Scholar
  11. Halstead, T.W., & Pleasant, L.G. (1982). 1982 Space Biology Accomplishments. NASA Technical Memorandum 86224.Google Scholar
  12. IUPS Commission on Gravitational Physiology. (1982). The Physiologist, 25(Suppl.).Google Scholar
  13. IUPS Commission on Gravitational Physiology. (1984). The Physiologist, 27(Suppl.).Google Scholar
  14. Jönsson, K. I., Rabbow, E., Schill, R. O., Harms-Ringdahl, M., & Rettberg, P. (2008). Tardigrades survive exposure to space in low Earth orbit. Current Biology, 18(17), R729–R731.CrossRefGoogle Scholar
  15. Kerr, R.A. (1997). Putative martian microbes called microscopy artifacts. Science, 278(5344), 1706–1707.CrossRefGoogle Scholar
  16. Kochav, S., & Eyal-Giladi, H. (1971). Bilateral symmetry in chick embryo determination by gravity. Science, 171, 1027.Google Scholar
  17. Luef, B., Frischkorn, K. R., Wrighton, K. C., Holman, H. N., Birarda, G., Thomas, B. C., Singh, A., Williams, K. H., Siegerist, C. E., Tringe, S. G., Downing, K. H., Comolli, L. R., & Banfield J. F. (2015). Diverse uncultivated ultra-small bacterial cells in groundwater. Nature Communications.  https://doi.org/10.1038/ncomms7372.
  18. Martel, J., & Young, J. D. E. (2008). Purported nanobacteria in human blood as calcium carbonate nanoparticles. Proceedings of the National Academy of Sciences, 105(14), 5549–5554.ADSCrossRefGoogle Scholar
  19. McKay, D. S., Gibson Jr., E. K., Thomas-Keprta, K. L., Vali, H., Romanek, C. S., Clemett, S. J., Chillier, X. D. F., Maechling, C. R., & Zare, R. N. (1996). Search for past life on Mars: Possible relic biogenic activity in martian meteorite AL84001. Science, 273, 924–929.Google Scholar
  20. Montgomery Jr. P. O., et al. (1977). The response of single human cells to zero-gravity. In R. S. Johnston & L. F. Dietlin (Eds.), Biomedical results from skylab, NASA SP-377, 221.Google Scholar
  21. Munevar, G. (2014). Space exploration and human survival. Space Policy, 30, 197–201.ADSCrossRefGoogle Scholar
  22. National Academies of Sciences, Engineering, and Medicine. (2018). Review and assessment of planetary protection policy development processes. Washington, DC: The National Academies Press.  https://doi.org/10.17226/25172.
  23. Neff, A. W., & Malacinski, G. M. (1982). Reversal of early pattern formation in inverted amphibian eggs. Proceedings of the Fourth Annual Meeting of the IUPS Commission on Gravitational Physiology. The Physiologist, 25(Suppl.), 119.Google Scholar
  24. Orosei, R., Lauro, S. E., Pettinelli, E., Cicchetti, A., Coradini, M., Cosciotti, B., Di Paolo, F., Flamini, E., Mattei, E., Pajola, M., Soldovieri, F., Cartacci, M., Cassenti, F., Frigeri, A., Giuppi, S., Martufi, R., Masdea, A., Mitri, G., Nenna, C., Noschese, R., Restano, M., & Seu, R. (2018). Radar evidence of subglacial liquid water on Mars. Science, 361(6401), 490–493.Google Scholar
  25. Plant Gravitational and Space Research. (1984). Report of a workshop held April 30–May 2, 1984 in Rosslyn. Virginia: Publication of the American Society of Plant Physiology.Google Scholar
  26. Rambout, P. C. (1981). The Human Element. In A meeting with the universe: Science discoveries from the space program. NASA, 142.Google Scholar
  27. Reports, Spacelab. (1984). Life sciences. Science, 225, 205–234.CrossRefGoogle Scholar
  28. Science. (2007). Special section: Mars reconnaissance orbiter. Vol. 317, 1705–1719.Google Scholar
  29. Siegel, S. M. (1968). Experimental Biology of ammonia-rich environments: Optical and isotopic evidence for vital activity in pennicillium in liquid ammonia-glycerol media at −40 C. Proceedings of the National Academy of Sciences, 60(2), 505.ADSMathSciNetCrossRefGoogle Scholar
  30. Siegel, S. M. (1970). Experimental biology of extreme environments and its significance for space bioscience, 1 and 2. Spaceflight, 12(128–130), 256–299.Google Scholar
  31. Siegel, S. M., & Spettel, T. W. (1977). Life and the outer planets: II. Enzyme activity in ammonia-water systems and other exotic media at various temperatures. Life Science and Space Research, 15, 76.Google Scholar
  32. Siegel, B. Z., & Siegel, S. M. (1980). Further studies on the environmental capabilities of fungi: Interactions of salinity, ultraviolet irradiation, and temperature in penicillium. In R. Holmquist (Ed.), Gospar Life Sciences and Space Research, Vol. 8. Pergamos Press, 59.Google Scholar
  33. Taylor, G. R. (1997). Cell biology experiments conducted in space. BioScience, 27, 102.CrossRefGoogle Scholar
  34. Toon, O. B., Pollack, J. B., Ward, W., Burns, J. A., & Bilski, K. (1980). The astronomical theory of climatic changes of Mars. Icarus, 44, 552–607.ADSCrossRefGoogle Scholar
  35. Yin, A. (2012). Structural analysis of the valles marineris fault zone: Possible evidence for large-scale strike-slip faulting on Mars. Lithosphere, 4(4), 286–330.ADSCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Lawrence Technological UniversitySouthfieldUSA

Personalised recommendations