Advertisement

State of the Art and Future Trends in the Usability of Patient Monitors

  • Evismar AndradeEmail author
  • Leo R. Quinlan
  • Richard Harte
  • Dara Byrne
  • Enda Fallon
  • Martina Kelly
  • Paul O’Connor
  • Denis O’Hora
  • Michael Scully
  • John Laffey
  • Patrick Pladys
  • Alain Beuchée
  • Gearoid ÓLaighin
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 876)

Abstract

According to the recent literature, approximately 250,000 deaths occur annually in U.S. hospitals resulting from medical error, making it the 3rd leading cause of death. One of the most commonly used devices in hospitals is the Patient Monitor (PM), a device which constantly monitors the vital signs of the patient. This paper reports on a review of the scientific literature on the usability of PMs in critical care. A detailed analysis of the data reveals that: (i) PMs are undergoing a slow, but continuous process of evolution with new advances focusing on enhancing the interaction between the caregivers and the PM, (ii) the usability of PMs is beginning to receive particular attention as usability is now considered to be strongly associated with patient safety. The data from this study will be used to carry out further investigations into the usability of PMs and to inform the design of future PMs.

Keywords

Patient monitor Physiologic monitor Human factors Ergonomics Usability User experience Critical care 

References

  1. 1.
    Makary, M.A., Daniel, M.: Medical error—the third leading cause of death in the US. BMJ 353, i2139 (2016)CrossRefGoogle Scholar
  2. 2.
    Cook, R.I., Woods, D.D.: Adapting to new technology in the operating room. Hum. Factors 38(4), 593–613 (1996)CrossRefGoogle Scholar
  3. 3.
    Fidler, R., et al.: Human factors approach to evaluate the user interface of physiologic monitoring. J. Electrocardiol. 48(6), 982–987 (2015)CrossRefGoogle Scholar
  4. 4.
    Liljegren, E., Osvalder, A.-L.: Cognitive engineering methods as usability evaluation tools for medical equipment. Int. J. Ind. Ergon. 34(1), 49–62 (2004)CrossRefGoogle Scholar
  5. 5.
    Drews, F.A.: Patient monitors in critical care: lessons for improvement. In: Advances in Patient Safety: New Directions and Alternative Approaches, Performance and Tools, vol. 3. Agency for Healthcare Research and Quality (US) (2008)Google Scholar
  6. 6.
    Koch, S.H., et al.: Intensive care unit nurses’ information needs and recommendations for integrated displays to improve nurses’ situation awareness. JAMIA 19(4), 583–590 (2012)Google Scholar
  7. 7.
    Effken, J.A., et al.: Making the constraints visible: testing the ecological approach to interface design. Ergonomics 40(1), 1–27 (1997)CrossRefGoogle Scholar
  8. 8.
    Drews, F.A., Doig, A.: Evaluation of a configural vital signs display for intensive care unit nurses. Hum. Factors 56(3), 569–580 (2014)CrossRefGoogle Scholar
  9. 9.
    Effken, J.A., et al.: Clinical information displays to improve ICU outcomes. Int. J. Med. Inf. 77(11), 765–777 (2008)CrossRefGoogle Scholar
  10. 10.
    Blike, G.T., et al.: A graphical object display improves anesthesiologists’ performance on a simulated diagnostic task. J. Clin. Monit. Comput. 15(1), 37–44 (1999)CrossRefGoogle Scholar
  11. 11.
    Zhang, Y., et al.: Effects of integrated graphical displays on situation awareness in anaesthesiology. Cogn. Technol. Work 4(2), 82–90 (2002)CrossRefGoogle Scholar
  12. 12.
    Agutter, J., et al.: Evaluation of graphic cardiovascular display in a high-fidelity simulator. Anesth. Analg. 97(5), 1403–1413 (2003)CrossRefGoogle Scholar
  13. 13.
    Jungk, A., et al.: Ergonomic Evaluation of an ecological interface and a profilogram display for hemodynamic monitoring. J. Clin. Monit. Comput. 15(7–8), 469–479 (1999)CrossRefGoogle Scholar
  14. 14.
    Görges, M., et al.: A far-view intensive care unit monitoring display enables faster triage. Dimens. Crit. Care Nurs. DCCN 30(4), 206–217 (2011)CrossRefGoogle Scholar
  15. 15.
    Görges, M., et al.: Evaluation of an integrated intensive care unit monitoring display by critical care fellow physicians. J. Clin. Monit. Comput. 26(6), 429–436 (2012)CrossRefGoogle Scholar
  16. 16.
    Koch, S.H., et al.: Integrated information displays for ICU nurses: field observations, display design, and display evaluation. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 54, no. 12, pp. 932–936 (2010)CrossRefGoogle Scholar
  17. 17.
    Koch, S.H., et al.: Evaluation of the effect of information integration in displays for ICU nurses on situation awareness and task completion time: a prospective randomized controlled study. Int. J. Med. Inf. 82(8), 665–675 (2013)CrossRefGoogle Scholar
  18. 18.
    Ng, G., et al.: Optimizing the tactile display of physiological information: vibro-tactile vs. electro-tactile stimulation, and forearm or wrist location. In: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2007, pp. 4202–4205 (2007)Google Scholar
  19. 19.
    Ng, G., et al.: Evaluation of a tactile display around the waist for physiological monitoring under different clinical workload conditions. In: Proceedings of Annual International Conference of the IEEE Engineering in Medicine and Biology Society, vol. 2008, pp. 1288–1291 (2008)Google Scholar
  20. 20.
    Barralon, P., et al.: Comparison between a dorsal and a belt tactile display prototype for decoding physiological events in the operating room. J. Clin. Monit. Comput. 23(3), 137–147 (2009)CrossRefGoogle Scholar
  21. 21.
    Ferris, T.K., Sarter, N.: Continuously informing vibrotactile displays in support of attention management and multitasking in anesthesiology. Hum. Factors 53(6), 600–611 (2011)CrossRefGoogle Scholar
  22. 22.
    Drake-Brockman, T.F.E., et al.: Patient monitoring with Google GLASS: a pilot study of a novel monitoring technology. Paediatr Anaesth. 26(5), 539–546 (2016)CrossRefGoogle Scholar
  23. 23.
    Iqbal, M.H., et al.: The effectiveness of Google GLASS as a vital signs monitor in surgery: a simulation study. Int. J. Surg. Lond. Engl. 36(Pt A), 293–297 (2016)CrossRefGoogle Scholar
  24. 24.
    McFarlane, D.C., et al.: Defeating information overload in health surveillance using a metacognitive aid innovation from military combat systems. J. Def. Model. Simul. 14(4), 371–388 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Evismar Andrade
    • 1
    • 2
    Email author
  • Leo R. Quinlan
    • 2
    • 3
  • Richard Harte
    • 1
    • 2
  • Dara Byrne
    • 5
    • 11
  • Enda Fallon
    • 4
  • Martina Kelly
    • 4
  • Paul O’Connor
    • 5
  • Denis O’Hora
    • 6
  • Michael Scully
    • 7
    • 8
  • John Laffey
    • 7
    • 8
  • Patrick Pladys
    • 9
    • 10
  • Alain Beuchée
    • 9
    • 10
  • Gearoid ÓLaighin
    • 1
    • 2
  1. 1.Electrical and Electronic Engineering, School of Engineering and InformaticsNUI GalwayGalwayIreland
  2. 2.Human Movement LaboratoryNUI GalwayGalwayIreland
  3. 3.Physiology, School of MedicineNUI GalwayGalwayIreland
  4. 4.Mechanical Engineering, College of Engineering and InformaticsNUI GalwayGalwayIreland
  5. 5.General Practice, School of MedicineNUI GalwayGalwayIreland
  6. 6.School of PsychologyNUI GalwayGalwayIreland
  7. 7.Anesthesia, School of MedicineNUI GalwayGalwayIreland
  8. 8.Department of Anaesthesia and Intensive Care MedicineUniversity Hospital GalwayGalwayIreland
  9. 9.Centre Hospitalier Universitaire de Rennes (CHU Rennes)RennesFrance
  10. 10.Faculté de Médicine de l’Université de RennesRennesFrance
  11. 11.Irish Centre for Applied Patient Safety and SimulationNUI GalwayGalwayIreland

Personalised recommendations