Advertisement

Development of a Biomechanical Bike with Assistive Technologies to Be Used for Rehabilitation

  • Anabela GomesEmail author
  • Álvaro Santos
  • Carlos Alcobia
  • César Páris
  • Deolinda Rasteiro
  • Emília Bigotte
  • Fernando Moita
  • Filipe Carvalho
  • Gabriel Pires
  • Jorge Lains
  • Pedro Amaro
  • Luís Roseiro
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 876)

Abstract

This paper presents a system named ExoBike, a structure similar to a bicycle, that takes over the function of an exoskeleton with rehabilitation purposes. The proposed system enables the control of limb movements based on the sensor data and the patient intentions. For that it has an adapted seat and several mechanical interface zones that have a set of sensors and actuators that enable therapeutics to implement an active/passive system that reacts dynamically to the needs of the disease under evaluation. The type and intensity of the training may be programmed by the medical staff that receives feedback in the software from the wireless sensors. The ExoBike allows the therapeutic professionals to put into practice adapted therapies with adjusted efforts for different patients. The patients’ movements are monitored using a set of wireless sensors network, implementing a personal virtual reality solution where the patient “play” in an environment strongly connected with reality.

Keywords

Rehabilitation and physical medicine Systems engineering applied biomechanics Biomedical applied electromechanics Mathematics and informatics applied to human health 

Notes

Acknowledgments

This work is co-financed by the European Regional Development Fund (ERDF), through the partnership agreement Portugal2020 – Regional Operation Program CENTRO2020, under the project SAICT-POL/24013/2016 ExoBike.

References

  1. 1.
    Abyarjoo, F., Barreto, A., Cofino, J., Ortega, F.R.: Implementing a sensor fusion algorithm for 3D orientation detection with inertial/magnetic sensors. In: Sobh, T., Elleithy, K., (eds.) Innovations and Advances in Computing, Informatics, Systems Sciences, Networking and Engineering. Lecture Notes in Electrical Engineering, vol. 313, pp. 305–310. Springer, Cham (2015)Google Scholar
  2. 2.
    Madgwick, S.O., Harrison, A.J., Vaidyanathan, R.: Estimation of IMU and MARG orientation using a gradient descent algorithm. In: Proceedings of IEEE International Conference on Rehabilitation Robotics, pp. 1–7 (2011).  https://doi.org/10.1109/icorr.2011.5975346
  3. 3.
    Zhang, Z., Ji, L.Y., Huang, Z., Wu, J.: Adaptive information fusion for human upper limb movement estimation. IEEE Trans. Syst. Man Cybern. - Part A: Syst. Hum. 42(5), 1100–1108 (2012)CrossRefGoogle Scholar
  4. 4.
    Rezvanian, S., Lockhart, T.E.: Towards real-time detection of freezing of gait using wavelet transform on wireless accelerometer data. Sensors 16(4), 475 (2016)CrossRefGoogle Scholar
  5. 5.
    Oung, Q.W., Muthusamy, H., Lee, H.L., Basah, S.N., Yaacob, S., Sarillee, M., Lee, C.H.: Technologies for Assessment of motor disorders in Parkinson’s disease: a review. Sensors 15, 21710–21745 (2015).  https://doi.org/10.3390/s150921710CrossRefGoogle Scholar
  6. 6.
    Moore, S.T., MacDougall, H.G., Ondo, W.G.: Ambulatory monitoring of freezing of gait in Parkinson’s disease. J. Neurosci. Methods 167(2), 340–348 (2008)CrossRefGoogle Scholar
  7. 7.
    Sabatelli, S., Galgani, M., Fanucci, L., Rocchi, A.: A double-stage Kalman filter for orientation tracking with an integrated processor in 9-D IMU. IEEE Trans. Instrum. Measur. 62(3), 590–598 (2013)CrossRefGoogle Scholar
  8. 8.
    Greenleaf, W.J., Tovar, M.A.: Augmenting reality in rehabilitation medicine. Artif. Intell. Med. 6(4), 289–299 (1994).  https://doi.org/10.1016/0933-3657(94)90034-5CrossRefGoogle Scholar
  9. 9.
    Kuhlen, T., Dohle, C.: Virtual reality for physically disabled people. Comput. Biol. Med. 25(2), 205–211 (1995)CrossRefGoogle Scholar
  10. 10.
    Kim, N.G., Yoo, C.K., Im, J.J.: A new rehabilitation training system for postural balance control using virtual reality technology. IEEE Trans. Rehabil. Eng. 7(4), 482–485 (1999)CrossRefGoogle Scholar
  11. 11.
    Sveistrup, H.: Motor rehabilitation using virtual reality. J. NeuroEng. Rehabil. 1(1), 10 (2004)CrossRefGoogle Scholar
  12. 12.
    Pfurtscheller, G., Neuper, C., Schlögl, A., Lugger, K.: Separability of EEG signals recorded during right and left motor imagery using adaptive autoregressive parameters. IEEE Trans. Rehabil. Eng. 6(3), 316–325 (1998)CrossRefGoogle Scholar
  13. 13.
    Pires, G., Nunes, U., Castelo-Branco, M.: Statistical spatial filtering for a P300-based BCI: tests in able-bodied, and patients with cerebral palsy and amyotrophic lateral sclerosis. J. Neurosci. Methods 195(2), 270–281 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Anabela Gomes
    • 1
    • 2
    Email author
  • Álvaro Santos
    • 1
  • Carlos Alcobia
    • 1
  • César Páris
    • 1
  • Deolinda Rasteiro
    • 1
  • Emília Bigotte
    • 1
  • Fernando Moita
    • 1
  • Filipe Carvalho
    • 3
  • Gabriel Pires
    • 4
  • Jorge Lains
    • 3
  • Pedro Amaro
    • 1
  • Luís Roseiro
    • 1
  1. 1.Coimbra Polytechnic - ISECCoimbraPortugal
  2. 2.Centre for Informatics and SystemsUniversity of CoimbraCoimbraPortugal
  3. 3.Centro de Medicina de Reabilitação da Região Centro – Rovisco PaisTochaPortugal
  4. 4.Polytechnic Institute of TomarTomarPortugal

Personalised recommendations