Remaining Useful Life as Prognostic Approach: A Review

  • Beata MrugalskaEmail author
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 876)


Prognostics is the process of predicting a lifetime point when a system or its component is not able to complete its proposed function. The time from the current time to the time of a failure is recognized as Remaining Useful Life (RUL). Such predictions are typically done with the application of model-based, data-driven, and hybrid-based approaches, to manage product support systems, structures, and infrastructures more safely and efficiently. In this paper the attention is exactly paid to their classifications and practical applications.


Prognostics Remaining Useful Life Failure 


  1. 1.
    Bonissone, P.P., Xue, F., Subbu, R.: Fast meta-models for local fusion of multiple predictive models. Appl. Soft Comput. J. 11(2), 1529–1539 (2011)CrossRefGoogle Scholar
  2. 2.
    Lasheras, F.S., Nieto, P.J.G., de Cos Juez, F.J., Bayón, R.M., Suárez, V.M.G.: A hybrid PCA-CART-MARS-based prognostic approach of the remaining useful life for aircraft engines. Sensors 15(3), 7062–7083 (2015)CrossRefGoogle Scholar
  3. 3.
    Yang, W.A., Xiao, M., Zhou, W., Guo, Y., Liao, W.: A hybrid prognostic approach for remaining useful life prediction of lithium-ion batteries. Shock Vibr., 15 (2016)Google Scholar
  4. 4.
    Zaidan, M.A., Mills, A.R., Harrison, R.F., Fleming, P.J.: Gas turbine engine prognostics using Bayesian hierarchical models: a variational approach. Mech. Syst. Signal Process. 70, 120–140 (2016)CrossRefGoogle Scholar
  5. 5.
    Si, X.S., Zhang, Z.X., Hu, C.H.: Adaptive prognostic approach via nonlinear degradation modeling. In: Si, X.S., Zhang, Z.X., Hu, C.H. (eds.) Data-Driven Remaining Useful Life Prognosis Techniques, pp. 247–271. Springer, Heidelberg (2017)CrossRefGoogle Scholar
  6. 6.
    Bastard, G.: Some diagnostic and prognostic methods for components supporting electrical energy management in a military vehicle. In: 2nd European Conference of the Prognostics and Health Management Society, PHME 2014, pp. 821–824 (2014)Google Scholar
  7. 7.
    Dragomir, O.E., Gouriveau, R., Dragomir, F., Minca, E., Zerhouni, N.: Review of prognostic problem in condition-based maintenance. In: European Control Conference, ECC 2009, Budapest, Hungary, pp. 1585–1592 (2009)Google Scholar
  8. 8.
    ISO 13381-1, Condition monitoring and diagnostics of machines - prognostics – Part 1: General guidelines. Int. Standard, ISO (2015)Google Scholar
  9. 9.
    Tobon-Mejia, D.A., Medjaher, K., Zerhouni, N.: The ISO 13381-1 standard’s failure prognostics process through an example. In: IEEE - Prognostics & System Health Management Conference, University of Macau, Macau, China (2010)Google Scholar
  10. 10.
    Lin, D., Makis, V.: Recursive filters for a partially observable system subject to random failure. Adv. Appl. Probab. 35, 207–227 (2003)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Okoh, C., Roy, R., Mehnen, J., Redding, L.: Overview of remaining useful life prediction techniques in through-life engineering services. In: Proceedings of the 6th CIRP Conference on Industrial Product-Service Systems. Procedia CIRP, vol. 16, pp. 158–163 (2014)CrossRefGoogle Scholar
  12. 12.
    Xiongzi, C., Jinsong, Y., Diyin, T., Yingxun, W.: Remaining useful life prognostic estimation for aircraft subsystems or components: a review. In: 10th IEEE International Conference on Electronic Measurement & Instruments (ICEMI), vol. 2, p. 94 (2011)Google Scholar
  13. 13.
    Sikorska, J.Z., Hodkiewicz, M., Ma, L.: Prognostic modeling options for remaining useful life estimation by industry. Mech. Syst. Signal Process. 25(5), 1803–1836 (2011)CrossRefGoogle Scholar
  14. 14.
    Jardine, A., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20, 1483–1510 (2006)CrossRefGoogle Scholar
  15. 15.
    Kothamasu, R., Huang, S.H., VerDuin, W.H.: System health monitoring and prognostics-a review of current paradigms and practices. Int. J. Adv. Manuf. Technol. 28(9–10), 1012–1024 (2006)CrossRefGoogle Scholar
  16. 16.
    Lee, J., Ni, J., Djurdjanovic, D., Qiu, H., Liao, H.: Intelligent prognostics tools and e-maintenance. Comput. Ind. 57(6), 476–489 (2006)CrossRefGoogle Scholar
  17. 17.
    Vachtsevanos, G., Lewis, F.L., Roemer, M., Hess, A., Wu, B.: Intelligent Fault Diagnosis and Prognosis for Engineering Systems. Wiley, New York (2006)CrossRefGoogle Scholar
  18. 18.
    Pecht, M.G.: Prognostics and health management of electronics. In: Prognostics and Health Management of Electronics, pp. 1–315 (2008)Google Scholar
  19. 19.
    Heng, A., Zhang, S., Tan, A.C.C., Mathew, J.: Rotating machinery prognostics: state of the art, challenges and opportunities. Mech. Syst. Signal Process. 23(3), 724–739 (2009)CrossRefGoogle Scholar
  20. 20.
    Medjaher, K., Tobon-Mejia, D., Zerhouni, N.: Remaining useful life estimation of critical components with application to bearings. IEEE Trans. Reliab. Instit. Electr. Electron. Eng. 61(2), 292–302 (2012)Google Scholar
  21. 21.
    Bechhoefer, E.: Data Driven prognostics for rotating machinery. In: Kadry, S. (ed.) Diagnostics and Prognostics of Engineering Systems: Methods and Techniques, pp. 120–134. IGI-Global (2013)Google Scholar
  22. 22.
    Zio, E.: Prognostics and health management of industrial equipment. In: Kadry, S. (ed.) Diagnostics and Prognostics of Engineering Systems: Methods and Techniques, pp. 333–356. IGI Global (2012)Google Scholar
  23. 23.
    Gouriveau, R., Medjaher, K., Zerhouni, N.: Mechanical engineering and solid mechanics series: reliability of multiphysical systems set. From Prognostics and Health Systems Management to Predictive Maintenance 1. Monitoring and Prognositics, p. 4. Wiley (2017)Google Scholar
  24. 24.
    Luo, M., Wang, D., Pham, M., Low, C.B., Zhang, J.B., Zhang, D.H., Zhao, Y.Z.: Model-based fault diagnosis/prognosis for wheeled mobile robots: a review. In: 31st Annual Conference of IEEE Industrial Electronics Society, IECON 2005, pp. 2267–2273 (2005)Google Scholar
  25. 25.
    Mrugalska, B.: A bounded-error approach to actuator fault diagnosis and remaining useful life prognosis of takagi-sugeno fuzzy systems. ISA Trans. 80, 257–266 (2018)CrossRefGoogle Scholar
  26. 26.
    Liao, L., Köttig, F.: Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction. IEEE Trans. Reliab. 63(1), 191–207 (2014)CrossRefGoogle Scholar
  27. 27.
    Medjaher, K., Tobon-Mejia, D.A., Zerhouni, N.: Remaining useful life estimation of critical components with application to bearings. IEEE J. Trans. Reliab. 61(2), 292–302 (2012)CrossRefGoogle Scholar
  28. 28.
    Xue, F., Bonissone, P., Varma, A., et al.: An instance-based method for remaining useful life estimation for aircraft engines. J. Fail. Anal. Preven. 8, 199–206 (2008)CrossRefGoogle Scholar
  29. 29.
    Tran, V.T., Pham, H.T., Yang, B.S., Nguyen, T.T.: Machine performance degradation assessment and remaining useful life prediction using proportional hazard model and SVM. In: Mathew, J., et al. (eds.) Engineering Asset Management and Infrastructure Sustainability, pp. 959–970. Springer, London (2011)Google Scholar
  30. 30.
    Wang, M., Wang, J.: CHMM for tool condition monitoring and remaining useful life prediction. Int. J. Adv. Manuf. Technol. 59, 463–471 (2012)CrossRefGoogle Scholar
  31. 31.
    Lim, R., Mba, D.: Fault detection and remaining useful life estimation using switching Kalman filters. In: Tse, P.W., et al. (eds.) Engineering Asset Management - Systems, Professional Practices and Certification. Proceedings of the 8th World Congress on Engineering Asset Management (WCEAM 2013) & the 3rd International Conference on Utility Management & Safety (ICUMAS). Lecture Notes in Mechanical Engineering, pp. 53–64. Springer, Cham (2015)Google Scholar
  32. 32.
    Raghavan, N., Frey, D.D.: Particle filter approach to lifetime prediction for microelectronic devices and systems with multiple failure mechanisms. Microelectron. Reliab. 55(9–10), 1297–1301 (2015)CrossRefGoogle Scholar
  33. 33.
    Si, X.S.: An adaptive prognostic approach via nonlinear degradation modeling: application to battery data. IEEE Trans. Ind. Electron. 62(8), 5082–5096 (2015)CrossRefGoogle Scholar
  34. 34.
    Wang, Y., Peng, Y., Zi, Y., Jin, X., Tsui, K.L.: A two-stage data-driven-based prognostic approach for bearing degradation problem. IEEE Trans. Ind. Inf. 12(3), 924–932 (2016)CrossRefGoogle Scholar
  35. 35.
    Saadat, B., Kouzou, A., Guemana, M., Hafaifa, A.: Availability phase estimation in gas turbine based on prognostic system modeling. Diagnostyka 18(2), 3–11 (2017)Google Scholar
  36. 36.
    Peng, Y., Cheng, J., Liu, Y., Li, X., Peng, Z.: An adaptive data-driven method for accurate prediction of remaining useful life of rolling bearings. front. Mech. Eng. 13(2), 301–310 (2018)Google Scholar
  37. 37.
    Valeti, B., Pakzad, S.N.: Estimation of remaining useful life of a fatigue damaged wind turbine blade with particle filters. In: Pakzad, S. (eds.) Dynamics of Civil Structures. Conference Proceedings of the Society for Experimental Mechanics Series, vol. 2, pp. 319–328. Springer, Cham (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Faculty of Engineering ManagementPoznan University of TechnologyPoznanPoland

Personalised recommendations