Advertisement

Experimental Investigations and Finite Element Modelling of the Vibratory Comportment of a Manual Wheelchair

  • Nadir Skendraoui
  • Fabien Bogard
  • Sébastien MurerEmail author
  • Fabien Beaumont
  • Boussad Abbes
  • Guillaume Polidori
  • Jean-Baptiste Nolot
  • Damien Erre
  • Serge Odof
  • Redha Taiar
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 876)

Abstract

This paper presents the comparison between the numerical results provided by the finite element model of a manual wheelchair and the vibration experiments performed on the same actual wheelchair. Two patients having different corpulence participated in this study while sitting on different types of cushions. The tests were carried out using a vibrating table with white noise as the input, in an attempt to simulate the entire vibration spectrum that the user of the chair could undergo. A numerical approach based on the finite element method has made it possible to create a numerical model of the wheelchair that can then anticipate structural problems resulting from these vibratory constraints. The objective of this work is to characterize the structure of the wheelchair as well as the vibration disturbances suffered by the user according to the daily life tasks. This first study will later allow the development of a design strategy oriented towards patient’s comfort with regard to vibrations and also to develop a new type of wheelchair using an adapted structure guaranteeing a longer material life.

Keywords

Wheelchair users wellbeing Vibrations Wheelchair Lifetime Vibrating plate Finite element modelling 

References

  1. 1.
    Hostens, I., Papaioannou, Y., Spaepen, A., Ramon, H.: A study of vibration characteristics on a luxury wheelchair and a newprototype wheelchair. J. S. Vibra. 266, 443–452 (2003)CrossRefGoogle Scholar
  2. 2.
    Hostens, I., Ramon, H.: Descriptive analysis of combine cabin vibrations and their effect on the human body. J. S. Vibra. 266, 453–464 (2003)CrossRefGoogle Scholar
  3. 3.
    Berger, M., van Nieuwenhuizen, M., van der Ent, M., van der Zande, M.: Development of a new wheelchair for wheelchair basketball players in the Netherlands. Proc. Eng. 34, 331–336 (2012)CrossRefGoogle Scholar
  4. 4.
    Fitzgerald, S.G., Cooper, R.A., Boninger, M.L., Rentschler, A.J.: Comparison of fatigue life for 3 types of manual wheelchairs. Arch. Phys. Med. Rehabil. 82, 1484–1488 (2001)CrossRefGoogle Scholar
  5. 5.
    Cooper, R.A., DiGiovine, C.P., Rentschler, A., Lawrence, B.M., Boninger, M.L.: Fatigue-life of two manual wheelchair cross-brace designs. Arch. Phys. Med. Rehab. 80, 1078–1081 (1999)CrossRefGoogle Scholar
  6. 6.
    Cooper, R.A., Boninger, M.L., Rentschler, A.J.: Evaluation of selected ultralight manual wheelchairs using ANSI/RESNA standards. Arch. Phys. Med. Rehabil. 80, 462–467 (1999)CrossRefGoogle Scholar
  7. 7.
    Liu, H., Cooper, R.A., Pearlman, J., Cooper, R., Connor, S.: Evaluation of titanium ultralight manual wheelchairs using ANSI/RESNA standards. JRRD 45(9), 1251–1268 (2008)CrossRefGoogle Scholar
  8. 8.
    Lei, L., Chun, Shi X., Guan, T.: Fatigue life analysis of the basketball wheelchair based on virtual prototype technology. Adv. Mater. Res. 538–541, 2807–2812 (2012)CrossRefGoogle Scholar
  9. 9.
    Kundu, S., Mazumder, O., Lenka, P.K., Bhaumik, S.: Design and performance evaluation of 4 wheeled omni wheelchair with reduced slip and vibration. Procedia Comput. Sci. 105, 289–295 (2017)CrossRefGoogle Scholar
  10. 10.
    Hischke, M., Reiser, R.F.: Effect of rear wheel suspension on tilt-in-space wheelchair shock and vibration attenuation. Am. Acad. Phys. Med. Rehab. (2018).  https://doi.org/10.1016/j.pmrj.2018.02.009CrossRefGoogle Scholar
  11. 11.
    Sonenblum, S., Sprigle, S., Caspall, J., Lopez, R.: Validation of an accelerometer-based method to measure the use of manual wheelchairs. Med. Eng. Phys. 34, 781–786 (2012)CrossRefGoogle Scholar
  12. 12.
    Guo, N., Yang, Z., Wang, L., Ouyang, Y., Zhang, X.: Dynamic model updating based on strain mode shape and natural frequency using hybrid pattern search technique. J. Sound Vibr. 422, 112–130 (2018)CrossRefGoogle Scholar
  13. 13.
    Eiras, J.N., Payan, C., Rakotonarivo, S., Garnier, V.: Experimental modal analysis and finite element model updating for structural health monitoring of reinforced concrete radioactive waste packages. Constr. Build. Mater. 180, 531–543 (2018)CrossRefGoogle Scholar
  14. 14.
    Corradi, R., Miccoli, S., Squicciarini, G., Fazioli, P.: Modal analysis of a grand piano soundboard at successive manufacturing stages. Appl. Acoust. 125, 113–127 (2017)CrossRefGoogle Scholar
  15. 15.
    Skendraoui, N., Bogard, F., Murer, S., Taiar, R., Polidori, G., Boyer, F.C.: Design of a new type of modular manual wheelchair: technical and numerical study. Ser. Biomech. 32(1), 20–29 (2018)Google Scholar
  16. 16.
    Traore, Y., Lestriez, P., Pradon, D., Debray, K., Taiar, R.: Optimization of wheelchair with standers. Ser. Biomech. 29(1), 25–37 (2015)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Nadir Skendraoui
    • 1
  • Fabien Bogard
    • 1
  • Sébastien Murer
    • 1
    Email author
  • Fabien Beaumont
    • 1
  • Boussad Abbes
    • 1
  • Guillaume Polidori
    • 1
  • Jean-Baptiste Nolot
    • 1
  • Damien Erre
    • 1
  • Serge Odof
    • 1
  • Redha Taiar
    • 1
  1. 1.Université de Reims Champagne-Ardenne, GRESPI EA 4694ReimsFrance

Personalised recommendations