Skin Laxity

  • Jingyun Gao
  • Diana BolotinEmail author


Over the past decade, there has been a surge in demand for minimally invasive treatments for aging skin. Patients seek non-surgical treatments due to reduced procedure-associated risks and faster recovery time compared to traditional surgical methods. One component of aging skin is the appearance of laxity, which is due to thinning of the epidermis, loss of dermal connective tissue and atrophy and/or redistribution of subcutaneous fat, or all of the above. Innovation in energy-based devices has created multiple avenues to address the various factors leading to skin laxity. This chapter will discuss the mechanism of action, efficacy and safety of ablative and non-ablative lasers, infrared light, ultrasound, and microneedling in treatment of skin laxity.


Ablative laser Non-ablative laser Infrared light device Radiofrequency device Microfocused ultrasound Microneedling Skin laxity 


  1. 1.
    Ibrahim O, Ibrahim SF. In: Orringer J, Dover JS, Alam M, editors. Body shaping: skin, fat cellulite. 1st ed. Elsevier; 2016.Google Scholar
  2. 2.
    Yaar M, Gilchrest BA. Aging of skin. In: Wolff K, Goldsmith LA, Katz SI, et al., editors. Fitzpatrick’s Dermatology in general medicine. 7th ed. New York: McGraw-Hill; 2008.Google Scholar
  3. 3.
    Smith JB, Fenske NA. Cutaneous manifestations and consequence of smoking. J Am Acad Dermatol. 1996;34:717–32.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Joffe I. Cigarette smoking and facial wrinkling. Ann Intern Med. 1991;115(8):659–60.Google Scholar
  5. 5.
    Frances C, Boisnic S, Hartmann D, et al. Changes in the elastic tissue of the non-sun-exposed skin of cigarette smokers. Br J Dermatol. 1991;125(1):43–7.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Yin L, Morita A, Tsuji T. Alterations of extracellular matrix induced by tobacco smoke extract. Arch Dermatol Res. 2000;292(4):188–94.PubMedPubMedCentralGoogle Scholar
  7. 7.
    Knuutinen A, Kokkonen N, Risteli J, et al. Smoking affects collagen synthesis and extracellular matrix turnover in human skin. Br J Dermatol. 2002;146(4):588–94.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Ortiz A, Grando SA. Smoking and the skin. Int J Deramtol. 2012;51(3):250–62.Google Scholar
  9. 9.
    Morita A. Tobacco smoke causes premature skin aging. J Dermatol Sci. 2007;48(3):169–75.PubMedPubMedCentralGoogle Scholar
  10. 10.
    Urano R, Sakabe K, Seiki K, Ohkido M. Female sex hormone stimulates culture human keratinocyte proliferation and its RNA- and protein-synthetic activities. J Dermatol Sci. 1995;9(3):176–84.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Son ED, Lee JY, Lee S, Kim MS, et al. Topical application of 17β- Estradiol increases extracellular matrix protein synthesis by stimulating TGF-β signaling in aged human skin in vivo. J Invest Dermatol. 2005;124(6):1149–61.PubMedPubMedCentralGoogle Scholar
  12. 12.
    Huber J, Gruber C. Immunological and dermatological impact of progesterone. Gynecol Endocrinol. 2001;15(sup 6):18–21.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Shah MG, Maibach HI. Estrogen and the skin: an overview. Am J Clin Dermatol. 2001;2(3):143–50.PubMedPubMedCentralGoogle Scholar
  14. 14.
    Wildt L, Sir-Petermann T. Oestrogen and age estimation of perimenopausal women. Lancet. 1999;354(9174):224.PubMedPubMedCentralGoogle Scholar
  15. 15.
    Pavlou P, Rallis M, Deliconstantinos G, et al. In-vivo data on the influence of tobacco smoke and UV light on murine skin. Toxicol Ind Health. 2009;25(4–5):231–9.PubMedPubMedCentralGoogle Scholar
  16. 16.
    Cosmetic Surgery National Data Bank Statistics. 2013.
  17. 17.
    The American society for aesthetic plastic surgery reports Americans spent more than 12 billion in 2014; procedures for men up 43% over five year period. 2014. Accessed 30 Dec 2016.
  18. 18.
    American society for aesthetic plastic surgery reports more than $13.5 billion spent for the first time ever. 2015. Accessed 30 Dec 2016.
  19. 19.
    Preissig J, Hamilton K, Markus R. Current laser resurfacing technologies: a review that delves beneath the surface. Semin Plast Surg. 2012;26(3):109–16.PubMedPubMedCentralGoogle Scholar
  20. 20.
    Ward PD, Baker SR. Long-term results of carbon dioxide laser resurfacing of the face. Arch Facial Plast Surg. 2008;10(4):238–43.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Alam M, Kalar R, Nodzenski M, et al. Multicenter prospective cohort study of the incidence of adverse events associated with cosmetic dermatologic procedures: laser, energy devices, and injectable neurotoxins and fillers. JAMA Dermatol. 2015;151(3):271–7.PubMedPubMedCentralGoogle Scholar
  22. 22.
    Manstein D, Herron GS, Sink RK, et al. Fractional photothermolysis: a new concept for cutaneous remodeling using microscopic patterns of thermal injury. Lasers Surg Med. 2004;34(5):426–38.Google Scholar
  23. 23.
    Fitzpatrick RE, Rostan EF, Marchell N. Collagen tightening induced by carbon dioxide laser versus erbium: YAG laser. Laser Surg Med. 2000;27(5):395–403.Google Scholar
  24. 24.
    Tierney EP, Hanke CW, Watkins L. Treatment of lower eyelid rhytids and laxity with ablative fractionated carbon-dioxide laser resurfacing: case series and review of the literature. J Am Acad Dermatol. 2011;64(4):730–40.Google Scholar
  25. 25.
    Bonan P, Campolmi P, Cannarozzo G, et al. Eyelid skin tightening: a novel “Niche” for fractional CO2 rejuvenation. J Eur Acad Dermatol Venereol. 2013;26(2):185–93.Google Scholar
  26. 26.
    Hong JS, Park SY, Seo KK, et al. Long pulsed 1064 nm Nd:YAG laser treatment for wrinkle reduction and skin laxity: evaluation of new parameters. Int J Dermatol. 2015;54(9):e345–50.PubMedPubMedCentralGoogle Scholar
  27. 27.
    Lee MW. Combination 532-nm and 1064-nm lasers for noninvasive skin rejuvenation and toning. Arch Dermatol. 2003;139(10):1265–76.Google Scholar
  28. 28.
    Lupton JR, Williams CM, Alster TS. Non-ablative laser skin resurfacing using a 1540 erbium glass laser: a clinical and histologic analysis. Dermatol Surg. 2002;28(9):833–5.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Sukal SA, Chapas AM, Bernstein LJ, et al. Eyelid tightening and improved eyelid aperture through non-ablative fractional resurfacing. Dermatol Surg. 2008;34(11):1454–8.Google Scholar
  30. 30.
    Wanner M, Tanzi EL, Alster TS. Fractional photothermolysis: treatment of facial and nonfacial cutaneous photodamage with a 1,550-nm erbium-doped fiber laser. Dermatol Surg. 2007;33(1):23–8.Google Scholar
  31. 31.
    Miller L, Mishra V, Alsaad S, et al. Clinical evaluation of a non-ablative 1940 nm fractional laser. J Drugs Dermatol. 2014;13(11):1324–9.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Goldberg DJ, Hussain M, Fazeli A, Berlin AL. Treatment of skin laxity of the lower face and neck in older individual with a broad-spectrum infrared light device. J Cosmet Laser Ther. 2007;9(1):35–40.PubMedPubMedCentralGoogle Scholar
  33. 33.
    Chan HH, Yu CS, Shek S, et al. A prospective, split face, single blinded study looking at the use of an infrared device with contact cooling in the treatment of skin laxity in Asians. Lasers Surg Med. 2008;40(2):146–52.PubMedPubMedCentralGoogle Scholar
  34. 34.
    Chua SH, Ang P, Khoo LS, Goh CL. Non-ablative infrared skin tightening in type IV to V Asian skin: a prospective clinical study. Dermatol Surg. 2007;33(2):146–51.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Blyumin-Karasik M, Rouhani P, Avashia N, et al. Skin tightening of aging upper arms using an infrared light device. Dermatol Surg. 2011;37(4):441–9.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Felici M, Gentile P, De Angelis B, et al. The use of infrared radiation in the treatment of skin laxity. J Cosmet Laser Ther. 2014;16(2):89–95.PubMedPubMedCentralGoogle Scholar
  37. 37.
    Fitzpatrick R, Geroneumus R, Goldberg D, et al. Multicenter study of noninvasive radiofrequency for periorbital tissue tightening. Lasers Surg Med. 2003;33(4):232–42.Google Scholar
  38. 38.
    Alster TS, Tanzi E. Improvement of neck and cheek laxity with a non-ablative radiofrequency device: a lifting experience. Dermatol Surg. 2004;30(4):503–7.Google Scholar
  39. 39.
    Finzi E, Spangler A. Multipass Vector (Mpave) technique with non-ablative radiofrequency to treat facial and neck laxity. Dermatol Surg. 2005;31:916–22.PubMedPubMedCentralGoogle Scholar
  40. 40.
    Kushikata N, Negishi K, Tezuka Y, et al. Non-ablative skin tightening with radiofrequency in Asian skin. Lasers Surg Med. 2005;36(2):92–7.Google Scholar
  41. 41.
    Desai S. In: Alam M., editor. Evidence-based procedural dermatology. New York: Springer; 2012.Google Scholar
  42. 42.
    Alexiades-Armenakas M, Newman J, Willey A, et al. Prospective multicenter clinical trial of minimally invasive temperature-controlled bipolar fractional radiofrequency system for rhytid and laxity treatment. Dermatol Surg. 2013;39(2):263–73.Google Scholar
  43. 43.
    Alexiades-Armenakas M, Berube D. Randomized, blinded, 3-arm clinical trial assessing optimal temperature and duration for treatment with minimal invasive fractional radiofrequency. Dermatol Surg. 2015;41(5):623–32.Google Scholar
  44. 44.
    Tanaka Y. Long term three-dimensional volumetric assessment of skin tightening using a sharply tapered non-insulated microneedle radiofrequency applicator with novel fractionated pulse mode in Asians. Laser Surg Med. 2015;47(8):626–33.Google Scholar
  45. 45.
    Alexiades-Armenakas M, Dover JS, Arndt KA. Unipolar versus bipolar radiofrequency treatment of rhytides and laxity using a mobile painless delivery method. Laser Surg Med. 2008;40(7):446–53.Google Scholar
  46. 46.
    Beasley KL, Weiss RA. Radiofrequency in cosmetic dermatology. Dermatol Clin. 2014;32(1):79–90.Google Scholar
  47. 47.
    Technology report: tissue tightening. Accessed 24 Dec 2016.
  48. 48.
    Important safety information. Accessed 24 Dec 2016.
  49. 49.
    Fisher GH, Jacobsen LG, Berstein LG, et al. Non-ablative radiofrequency treatment of facial laxity. Dermatol Surg. 2005;31(supp 3):1237–41.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Minkis K, Hruza GJ, Alam M. In: Orringer J, Dover JS, Alam M., editors. Body shaping: skin, fat cellulite. 1st ed. Elsevier; 2016.Google Scholar
  51. 51.
    Alam M, White LE, Martin N, et al. Ultrasound tightening of facial and neck sin: a rater-blinded prospective cohort study. J Am Acad Dermatol. 2010;62(2):262–9.Google Scholar
  52. 52.
    Oni G, Hoxworth R, Teotia S, et al. Evaluation of a microfocused ultrasound system for improving skin laxity and tightening in the lower face. Aesthet Surg J. 2014;34(7):1099–110.Google Scholar
  53. 53.
    Suh DH, Shin MK, Lee SJ, et al. Intense focused ultrasound tightening in Asian skin: clinical and pathologic results. Deramtol Surg. 2011;37(11):1595–602.Google Scholar
  54. 54.
    Rokhsar C, Schnebelen W, West A, Hornfeldt C. Safety and efficacy of microfocused ultrasound in tightening of lax elbow skin. Dermatol Surg. 2015;41(7):821–6.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Gold MH, Sensing W, Biron J. Use of micro-focused ultrasound with visualization to lift and tighten lax knee skin. J Cosmet Laser Ther. 2014;16(5):225–9.PubMedPubMedCentralGoogle Scholar
  56. 56.
    Goldberg DJ, Hornfeldt CS. Safety and efficacy of microfocused ultrasound to lift, tighten, and smooth buttocks. Dermatol Surg. 2014;40(10):1113–7.Google Scholar
  57. 57.
    Park H, Kim E, Jim J, et al. High-intensity focused ultrasound for the treatment of wrinkles and skin laxity in seven different facial areas. Ann Dermatol. 2015;27(6):688–93.PubMedPubMedCentralGoogle Scholar
  58. 58.
    Alster TS, Tanzi EL. Noninvasive lifting of arm, thigh, and knee skin with transcutaneous intense focused ultrasound. Dermatol Surg. 2012;38(5):754–9.Google Scholar
  59. 59.
    Pak CS, Lee YK, Jeong JH, et al. Safety and efficacy of Ulthera in the rejuvenation of aging lower eyelids: a pivotal clinical trial. Aesthet Plast Surg. 2014;38(5):861–8.Google Scholar
  60. 60.
    Suh DH, Kim DH, et a LHK. Intense focused ultrasound (IFUS) with a modified parameter on facial tightening: a study on its safety and efficacy. J Cosmet Laser Ther. 2016;18(8):448–51.PubMedPubMedCentralGoogle Scholar
  61. 61.
    Baumann L, Zelickson B. Evaluation of micro-focused ultrasound for lifting and tightening neck laxity. J Drugs Dermatol. 2016;15(5):607–14.Google Scholar
  62. 62.
    MacGregor JL, Tanzi E. Microfocused ultrasound for skin tightening. Semin Cutan Med Surg. 2013;32(1):18–25.PubMedPubMedCentralGoogle Scholar
  63. 63.
    Sasaki GH, Tevez A. Clinical efficacy and safety of focused-image ultrasonography: a 2-year experience. Aesthet Surg J. 2012;31(5):601–12.Google Scholar
  64. 64.
    Yu CS, Yeung CK, Shek SY, et al. Combined infrared light and bipolar radiofrequency for skin tightening in Asians. Lasers Surg Med. 2007;39(6):471–5.PubMedPubMedCentralGoogle Scholar
  65. 65.
    Doshi SN, Alster TS. Combination radiofrequency and diode laser for treatment of facial rhytides and skin laxity. J Cosmet Laser Ther. 2005;7(1):11–5.PubMedPubMedCentralGoogle Scholar
  66. 66.
    Kulick M. Evaluation of a combined laser-radio frequency device (Polaris WR) for the non-ablative treatment of facial wrinkles. J Cosmet Laser Ther. 2005;7(2):87–92.PubMedPubMedCentralGoogle Scholar
  67. 67.
    Brightman L, Weiss E, Chapas AM, et al. Improvement in arm and post-partum abdominal and flank subcutaneous fat deposits and skin laxity using a bipolar radiofrequency, infrared, vacuum and mechanical massage device. Lasers Surg Med. 2009;41(10):791–8.Google Scholar
  68. 68.
    McCrudden M, McAlister E, Courtenay AJ, et al. Microneedle application in improving skin appearance. Exp Dermatol. 2015;24(8):561–6.PubMedPubMedCentralGoogle Scholar
  69. 69.
    El-Domyati M, Barakat M, Awad S, et al. Multiple microneedling sessions for minimally invasive facial rejuvenation: an objective assessment. Int J Dermatol. 2015;54(12):1361–9.PubMedPubMedCentralGoogle Scholar
  70. 70.
    Alexiades-Armenakas M, Rosenberg D, Renton B, Dover J, Arndt K. Blinded, randomized, quantitative grading comparison of minimally invasive, fractional radiofrequency and surgical face-lift to treat skin laxity. Arch Dermatol. 2010;146(4):396–405.PubMedPubMedCentralGoogle Scholar
  71. 71.
    Taylor MB, Prokopenko I. Split-face comparison of radiofrequency versus long-pulse Nd-YAG treatment of facial laxity. J Cosmet Laser Ther. 2006;8(1):17–22.PubMedPubMedCentralGoogle Scholar
  72. 72.
    Key DJ. Single-treatment skin tightening by radiofrequency and long-pulsed, 1064-nm Nd:YAG laser compared. Lasers Surg Med. 2007;39(2):169–75.Google Scholar
  73. 73.
    Ruiz-Esparza J. Near painless, non-ablative, immediate skin contraction induced by low-fluence irradiation with new infrared device: a report of 25 patients. Dermatol Surg. 2006;32(5):601–10.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Narins RS, Tope WD, Pope K, Ross E. Overtreatment effects associated with a radiofrequency tissue-tightening device; rare, preventable and correctable with subcision and autologous fat transfer. Dermatol Surg. 2006;32:115–24.Google Scholar
  75. 75.
    Lee JC, Daniels MA, Roth MZ. Mesotherapy, microneedling and chemical peels. Clin Plast Surg. 2016;43(3):583–95.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Pahwa M, Pahwa P, Zaheer A. “Tram track effect” after treatment of acne scars using a microneedling device. Dermatol Surg. 2012;38(7):1107–8.PubMedPubMedCentralGoogle Scholar
  77. 77.
    Soltani-Arabshahi R, Wong JW, Duffy KL, et al. Facial allergic granulomatous reaction and systemic hypersensitivity associated with microneedle therapy for skin rejuvenation. JAMA Dermatol. 2014;150(1):68–72.PubMedPubMedCentralGoogle Scholar
  78. 78.
    Hartmann D, Tuzicka T, Gauglitz GG. Complications associated with cutaneous aesthetic procedures. J Dtsch Dermatol Ges. 2015;13(8):778–86.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Chandrashekar BS, Sriram R, Mysore R, et al. Evaluation of microneedling fractional radiofrequency device for treatment of acne scars. J Cutan Esthet Surg. 2014;7(2):93–7.Google Scholar
  80. 80.
    Kim H, Park KY, Choi SY. The efficacy, longevity, and safety of combined radiofrequency treatment and hyaluronic acid filler for skin rejuvenation. Ann Dermatol. 2014;26(4):447–56.PubMedPubMedCentralGoogle Scholar
  81. 81.
    Choi SY, Lee YH, Kim H, et al. A combination trial of intradermal radiofrequency and hyaluronic acid filler for the treatment of nasolabial fold wrinkles: a pilot study. J Cosmet Laser Ther. 2014;16(1):37–42.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Wu DC, Karnik J, Margarella T, et al. Evaluation of the in vivo effects of various laser, light or ultrasound modalities on human skin treated with a collagen and polymethylmethacrylate microsphere dermal filler product. Lasers Surg Med. 2016;48(9):811–9.PubMedPubMedCentralGoogle Scholar
  83. 83.
    Alam M, Levy R, Pajvani U, et al. Safety of radiofrequency treatment over human skin previously injected with medium term injectable soft-tissue augmentation materials: a controlled pilot trial. Lasers Surg Med. 2006;38(3):205–10.PubMedPubMedCentralGoogle Scholar
  84. 84.
    Fabi SG, Burgess C, Carruthers A, et al. Consensus recommendations for combined aesthetic interventions using botulinum toxin, fillers, and microfocused ultrasound in the neck, décolletage, hands, and other areas of the body. Dermatol Surg. 2016;41(10):1199–208.Google Scholar
  85. 85.
    Wu DC, Green JB. Rejuvenation of the aging arm: multimodal combination therapy for optimal results. Dermatol Surg. 2016;42(s2):119–23.Google Scholar
  86. 86.
    Hamilton HK, Pritzker RN, Alxiades-Armenakas M. In: Orringer J, Dover JS, Alam M, editors. Body shaping: skin, fat cellulite. 1st ed. Elsevier; 2016.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Section of DermatologyUniversity of ChicagoChicagoUSA

Personalised recommendations