Nail Procedures

  • Daniel R. Knabel
  • Nathaniel J. Jellinek
  • Thomas J. Knackstedt


The evidence-based treatment of nail disease remains a challenge. Unlike in the skin, the nails are slow growing and many interventions will not be readily apparent for several months. Many practitioners do not feel comfortable with invasive nail procedures and, relative to the remaining skin, nail biopsies are done by fewer practitioners. Indeed, most residents perform less than ten nail procedures in their training, and 30% of residents do not feel competent in nail diseases at the conclusion of their residency (4) (Clark et al. Dermatol Surg 42:696–698, 2016). Experts have noted significant knowledge gaps among practitioners for nail procedures (5) (Hare and Rich, Dermatol Clin 34:269–73, 2016). Especially in the procedural realm, high-level evidence in the form of randomized trials and prospective cohorts is rarely available. Oftentimes, case reports, case series, and expert opinion dictate the standard of care for nail procedures.


Nail procedures Nail disease Nail plate avulsion Nail bed biopsy Matrix biopsy Mohs micrographic surgery En bloc excisions 


  1. 1.
    Clark MA, Yoo SS, Kundu RV. Nail surgery techniques: a single center survey study on the effect of a cadaveric hand practicum in dermatology resident education. Dermatol Surg. 2016;42(5):696–8.PubMedCrossRefGoogle Scholar
  2. 2.
    Hare AQ, Rich P. Clinical and educational gaps in diagnosis of nail disorders. Dermatol Clin. 2016;34(3):269–73.PubMedCrossRefGoogle Scholar
  3. 3.
    Haneke E. Nail surgery. Clin Dermatol. 2013;31(5):516–25.PubMedCrossRefGoogle Scholar
  4. 4.
    Ronger S, et al. Dermoscopic examination of nail pigmentation. Arch Dermatol. 2002;138(10):1327–33.PubMedCrossRefGoogle Scholar
  5. 5.
    Braun RP, et al. Surgical pearl: dermoscopy of the free edge of the nail to determine the level of nail plate pigmentation and the location of its probable origin in the proximal or distal nail matrix. J Am Acad Dermatol. 2006;55(3):512–3.PubMedCrossRefGoogle Scholar
  6. 6.
    Richert B, Caucanas M, Andre J. Diagnosis using nail matrix. Dermatol Clin. 2015;33(2):243–55.PubMedCrossRefGoogle Scholar
  7. 7.
    McGinness JL, Parlette HL 3rd. Versatile sterile field for nail surgery using a sterile glove. Dermatol Online J. 2005;11(3):10.PubMedGoogle Scholar
  8. 8.
    Abimelec P. Tips and tricks in nail surgery. Semin Cutan Med Surg. 2009;28(1):55–60.PubMedCrossRefGoogle Scholar
  9. 9.
    Park KK, Sharon VR. A review of local anesthetics: minimizing risk and side effects in cutaneous surgery. Dermatol Surg. 2016;43(2):173–87.CrossRefGoogle Scholar
  10. 10.
    Keramidas EG, Rodopoulou SG. Ropivacaine versus lidocaine in digital nerve blocks: a prospective study. Plast Reconstr Surg. 2007;119(7):2148–52.PubMedCrossRefGoogle Scholar
  11. 11.
    Schnabl SM, et al. Skin perfusion and pain evaluation with different local anaesthetics in a double blind randomized study following digital nerve block anaesthesia. Clin Hemorheol Microcirc. 2013;55(2):241–53.PubMedGoogle Scholar
  12. 12.
    Vinycomb TI, Sahhar LJ. Comparison of local anesthetics for digital nerve blocks: a systematic review. J Hand Surg Am. 2014;39(4):744–51. e5.PubMedCrossRefGoogle Scholar
  13. 13.
    Jellinek NJ, Velez NF. Nail surgery: best way to obtain effective anesthesia. Dermatol Clin. 2015;33(2):265–71.PubMedCrossRefGoogle Scholar
  14. 14.
    Dixit S, et al. Ice anaesthesia in procedural dermatology. Australas J Dermatol. 2013;54(4):273–6.PubMedCrossRefGoogle Scholar
  15. 15.
    Palmon SC, Lloyd AT, Kirsch JR. The effect of needle gauge and lidocaine pH on pain during intradermal injection. Anesth Analg. 1998;86(2):379–81.PubMedGoogle Scholar
  16. 16.
    Hogan ME, et al. Systematic review and meta-analysis of the effect of warming local anesthetics on injection pain. Ann Emerg Med. 2011;58(1):86–98. e1.PubMedCrossRefGoogle Scholar
  17. 17.
    Jellinek NJ. Commentary: how much is too much? Tourniquets and digital ischemia. Dermatol Surg. 2013;39(4):593–5.PubMedCrossRefGoogle Scholar
  18. 18.
    Middleton SD, et al. Variability in local pressures under digital tourniquets. J Hand Surg Eur Vol. 2014;39(6):637–41.PubMedCrossRefGoogle Scholar
  19. 19.
    Wapler C, et al. A prospective study of 100 cases of sterile T-RING digital tourniquet application. Hand Surg Rehabil. 2016;35(4):271–9.PubMedCrossRefGoogle Scholar
  20. 20.
    Denkler K. A comprehensive review of epinephrine in the finger: to do or not to do. Plast Reconstr Surg. 2001;108(1):114–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Lalonde D, et al. A multicenter prospective study of 3,110 consecutive cases of elective epinephrine use in the fingers and hand: the Dalhousie Project clinical phase. J Hand Surg Am. 2005;30(5):1061–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Ilicki J. Safety of epinephrine in digital nerve blocks: a literature review. J Emerg Med. 2015;49(5):799–809.PubMedCrossRefGoogle Scholar
  23. 23.
    Chowdhry S, et al. Do not use epinephrine in digital blocks: myth or truth? Part II. A retrospective review of 1111 cases. Plast Reconstr Surg. 2010;126(6):2031–4.PubMedCrossRefGoogle Scholar
  24. 24.
    de Berker DA, et al. Retronychia: proximal ingrowing of the nail plate. J Am Acad Dermatol. 2008;58(6):978–83.PubMedCrossRefGoogle Scholar
  25. 25.
    Collins SC, Cordova K, Jellinek NJ. Alternatives to complete nail plate avulsion. J Am Acad Dermatol. 2008;59(4):619–26.PubMedCrossRefGoogle Scholar
  26. 26.
    Jellinek NJ, Cordova KB. Frozen sections for nail surgery: avulsion is unnecessary. Dermatol Surg. 2013;39(2):312–4.PubMedCrossRefGoogle Scholar
  27. 27.
    Jellinek NJ, Velez NF, Knackstedt TJ. Recovery after matrix shave biopsy. Dermatol Surg. 2016;42(10):1227–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Weinand C, et al. A comparison of complications in 400 patients after native nail versus silicone nail splints for fingernail splinting after injuries. World J Surg. 2014;38(10):2574–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Kain N, Koshy O. Evacuation of subungual haematomas using punch biopsy. J Plast Reconstr Aesthet Surg. 2010;63(11):1932–3.PubMedCrossRefGoogle Scholar
  30. 30.
    Khan MA, West E, Tyler M. Two millimetre biopsy punch: a painless and practical instrument for evacuation of subungual haematomas in adults and children. J Hand Surg Eur Vol. 2011;36(7):615–7.PubMedCrossRefGoogle Scholar
  31. 31.
    Kim JE, et al. Proximal nail fold-lunula double punch technique: a less invasive method for sampling nail matrix without nail avulsion. Indian J Dermatol Venereol Leprol. 2011;77(3):346–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Siegle RJ, Swanson NA. Nail surgery: a review. J Dermatol Surg Oncol. 1982;8(8):659–66.PubMedCrossRefGoogle Scholar
  33. 33.
    Haneke E, Baran R. Longitudinal melanonychia. Dermatol Surg. 2001;27(6):580–4.PubMedCrossRefGoogle Scholar
  34. 34.
    Richert B, et al. Tangential excision of pigmented nail matrix lesions responsible for longitudinal melanonychia: evaluation of the technique on a series of 30 patients. J Am Acad Dermatol. 2013;69(1):96–104.PubMedCrossRefGoogle Scholar
  35. 35.
    Metzger S, et al. Extent and consequences of physician delay in the diagnosis of acral melanoma. Melanoma Res. 1998;8(2):181–6.PubMedCrossRefGoogle Scholar
  36. 36.
    Benati E, et al. Clinical and dermoscopic clues to differentiate pigmented nail bands: an International Dermoscopy Society study. J Eur Acad Dermatol Venereol. 2017;31(4):732–6.PubMedCrossRefGoogle Scholar
  37. 37.
    Jellinek N. Nail matrix biopsy of longitudinal melanonychia: diagnostic algorithm including the matrix shave biopsy. J Am Acad Dermatol. 2007;56(5):803–10.PubMedCrossRefGoogle Scholar
  38. 38.
    Di Chiacchio N, et al. Tangential biopsy thickness versus lesion depth in longitudinal melanonychia: a pilot study. Dermatol Res Pract. 2012;2012:353864.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Yaemsiri S, et al. Growth rate of human fingernails and toenails in healthy American young adults. J Eur Acad Dermatol Venereol. 2010;24(4):420–3.PubMedCrossRefGoogle Scholar
  40. 40.
    Lai WY, et al. Clinical characteristics and treatment outcomes of patients undergoing nail avulsion surgery for dystrophic nails. Hong Kong Med J. 2011;17(2):127–31.PubMedGoogle Scholar
  41. 41.
    Hanno R, Mathes BM, Krull EA. Longitudinal nail biopsy in evaluation of acquired nail dystrophies. J Am Acad Dermatol. 1986;14(5 Pt 1):803–9.PubMedCrossRefGoogle Scholar
  42. 42.
    Grover C, et al. Longitudinal nail biopsy: utility in 20-nail dystrophy. Dermatol Surg. 2003;29(11):1125–9.PubMedGoogle Scholar
  43. 43.
    de Berker DA. Lateral longitudinal nail biopsy. Australas J Dermatol. 2001;42(2):142–4.PubMedCrossRefGoogle Scholar
  44. 44.
    Jellinek NJ, Rubin AI. Lateral longitudinal excision of the nail unit. Dermatol Surg. 2011;37(12):1781–5.PubMedCrossRefGoogle Scholar
  45. 45.
    Collins SC, Cordova KB, Jellinek NJ. Midline/paramedian longitudinal matrix excision with flap reconstruction: alternative surgical techniques for evaluation of longitudinal melanonychia. J Am Acad Dermatol. 2010;62(4):627–36.PubMedCrossRefGoogle Scholar
  46. 46.
    Jellinek NJ. Flaps in nail surgery. Dermatol Ther. 2012;25(6):535–44.PubMedCrossRefGoogle Scholar
  47. 47.
    Zaiac MN, Weiss E. Mohs micrographic surgery of the nail unit and squamous cell carcinoma. Dermatol Surg. 2001;27(3):246–51.PubMedGoogle Scholar
  48. 48.
    Dika E, et al. Mohs surgery for squamous cell carcinoma of the nail unit: 10 years of experience. Dermatol Surg. 2015;41(9):1015–9.PubMedGoogle Scholar
  49. 49.
    Tang N, et al. A retrospective study of nail squamous cell carcinoma at 2 institutions. Dermatol Surg. 2016;42(Suppl 1):S8–s17.PubMedCrossRefGoogle Scholar
  50. 50.
    Dika E, et al. Two synchronous periungual BCC treated with Mohs surgery. Nail polish related? Cutan Ocul Toxicol. 2013;32(2):161–3.PubMedCrossRefGoogle Scholar
  51. 51.
    Brasie RA, Patel AR, Nouri K. Basal cell carcinoma of the nail unit treated with Mohs micrographic surgery: superficial multicentric BCC with jagged borders – a histopathological hallmark for nail unit BCC. J Drugs Dermatol. 2006;5(7):660–3.PubMedGoogle Scholar
  52. 52.
    Martinelli PT, et al. Periungual basal cell carcinoma: case report and literature review. Dermatol Surg. 2006;32(2):320–3.PubMedGoogle Scholar
  53. 53.
    Etzkorn JR, et al. Low recurrence rates for in situ and invasive melanomas using Mohs micrographic surgery with melanoma antigen recognized by T cells 1 (MART-1) immunostaining: tissue processing methodology to optimize pathologic staging and margin assessment. J Am Acad Dermatol. 2015;72(5):840–50.PubMedCrossRefGoogle Scholar
  54. 54.
    Bricca GM, Brodland DG, Zitelli JA. Immunostaining melanoma frozen sections: the 1-hour protocol. Dermatol Surg. 2004;30(3):403–8.PubMedGoogle Scholar
  55. 55.
    High WA, et al. Presentation, histopathologic findings, and clinical outcomes in 7 cases of melanoma in situ of the nail unit. Arch Dermatol. 2004;140(9):1102–6.PubMedCrossRefGoogle Scholar
  56. 56.
    Brodland DG. The treatment of nail apparatus melanoma with Mohs micrographic surgery. Dermatol Surg. 2001;27(3):269–73.PubMedGoogle Scholar
  57. 57.
    Terushkin V, et al. Digit-sparing Mohs surgery for melanoma. Dermatol Surg. 2016;42(1):83–93.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Jellinek NJ, Bauer JH. En bloc excision of the nail. Dermatol Surg. 2010;36(9):1445–50.PubMedCrossRefGoogle Scholar
  59. 59.
    Moehrle M, et al. “Functional” surgery in subungual melanoma. Dermatol Surg. 2003;29(4):366–74.PubMedGoogle Scholar
  60. 60.
    Heaton KM, et al. Surgical management and prognostic factors in patients with subungual melanoma. Ann Surg. 1994;219(2):197–204.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Nguyen JT, et al. Surgical management of subungual melanoma: mayo clinic experience of 124 cases. Ann Plast Surg. 2013;71(4):346–54.PubMedCrossRefGoogle Scholar
  62. 62.
    Park KG, Blessing K, Kernohan NM. Surgical aspects of subungual malignant melanomas. The Scottish Melanoma Group. Ann Surg. 1992;216(6):692–5.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Neczyporenko F, et al. Management of in situ melanoma of the nail apparatus with functional surgery: report of 11 cases and review of the literature. J Eur Acad Dermatol Venereol. 2014;28(5):550–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Nakamura Y, et al. Effects of non-amputative wide local excision on the local control and prognosis of in situ and invasive subungual melanoma. J Dermatol. 2015;42(9):861–6.PubMedCrossRefGoogle Scholar
  65. 65.
    Duarte AF, et al. Nail melanoma in situ: clinical, dermoscopic, pathologic clues, and steps for minimally invasive treatment. Dermatol Surg. 2015;41(1):59–68.PubMedCrossRefGoogle Scholar
  66. 66.
    Sureda N, et al. Conservative surgical management of subungual (matrix derived) melanoma: report of seven cases and literature review. Br J Dermatol. 2011;165(4):852–8.PubMedCrossRefGoogle Scholar
  67. 67.
    Lazar A, Abimelec P, Dumontier C. Full thickness skin graft for nail unit reconstruction. J Hand Surg Br. 2005;30(2):194–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Furukawa H, et al. Melanoma of thumb: retrospective study for amputation levels, surgical margin and reconstruction. J Plast Reconstr Aesthet Surg. 2007;60(1):24–31.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Daniel R. Knabel
    • 1
  • Nathaniel J. Jellinek
    • 2
    • 3
    • 4
  • Thomas J. Knackstedt
    • 1
  1. 1.Department of DermatologyCleveland Clinic FoundationClevelandUSA
  2. 2.Dermatology Professionals, Inc.East GreenwichUSA
  3. 3.Department of DermatologyThe Warren Alpert Medical School of Brown UniversityProvidenceUSA
  4. 4.Division of DermatologyUniversity of Massachusetts Medical SchoolWorcesterUSA

Personalised recommendations