• Zoe Diana DraelosEmail author


The terms cosmeceutical and evidence-based may not belong in the same phrase. Cosmeceuticals are considered by many scientists to represent fluff without stuff, and indeed the reader may come to a similar conclusion at the end of this chapter. Nevertheless, it is worthwhile to examine the state of the science for cosmeceuticals as they represent an ever-expanding field in dermatology with perhaps much yet unrealized promise. Cosmeceuticals extend beyond cosmetics to enhance skin functioning, usually aiming to return the skin to a more youthful state. For example, wrinkle-reducing moisturizers, antioxidant serums, and skin-lightening salves all fall into this category. Cosmeceuticals are somewhat confusing, however, as both prescription and over-the-counter (OTC) products have been labeled by this term. Drug cosmeceuticals include topical retinoids for improving dermal collagen production, topical minoxidil for enhanced scalp hair growth, and eflornithine for facial hair growth reduction. These products will not be discussed, as they are not available to the consumer except by prescription. The second category of cosmeceuticals includes OTC drugs, such as sunscreens and antiperspirants. These also are outside the realm of this chapter. The discussion will focus on cosmeceuticals that are topically applied for the purpose of improving skin appearance.


Cosmeceuticals Growth factors Antioxidants Carotenoids Flavonoids Polyphenols 


  1. 1.
    Hussein G, Sankawa U, Goto H, Matsumoto K, Watanabe H. Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod. 2006;69(3):443–9.Google Scholar
  2. 2.
    Karppi J, Rissanen TH, Nyyssonen K, Kaikkonen J, Olsson AG, Voutilaninen S, et al. Effects of astaxanthin supplementation of lipid peroxidation. Int J Vitam Nutr Res. 2007;77(1):3–11.Google Scholar
  3. 3.
    Seki T. Effects of astaxanthin on human skin. Frag J. 2001;12:98–103.Google Scholar
  4. 4.
    Higuera-Ciapara I, Felix-Valenzuela L, Goycoolea FM. Astaxanthin: a review of its chemistry and applications. Crit Rev Food Sci Nutr. 2006;46(2):185–96.Google Scholar
  5. 5.
    Tso MO, Lam TT. Method of retarding and ameliorating central nervous system and eye damage. US Patent #5527533. Board of trustees of the University of Illinois, USA; 1996.Google Scholar
  6. 6.
    Pashkow FJ, Watumull DG, Campbell CL. Astaxanthin: a novel potential treatment for oxidative stress and inflammation in cardiovascular disease. Am J Cardiol. 2008;101(10A):58D–68.Google Scholar
  7. 7.
    Alves-Rodrigues A, Shao A. The science behind lutein. Toxicol Lett. 2004;150(1):57–83.Google Scholar
  8. 8.
    Barclay L. Lutein improves visual function in age-related macular degeneration. Medscape Medical News. Accessed 13 June 2011.
  9. 9.
    Hahn A, Mang B. Lutein and eye health-current state of discussion. Med Monatsschr Pharm. 2008;31(8):299–308.Google Scholar
  10. 10.
    Semba RD, Dagnelie G. Are lutein and zeaxanthin conditionally essential nutrients for eye health? Med Hypotheses. 2003;61(4):465–72.Google Scholar
  11. 11.
  12. 12.
    American Association for Cancer Research Newsletter May 17; 2007, “No Magic Tomato?”.Google Scholar
  13. 13.
    Kligman LH, Do CH, Kligman AM. Topical retinoic acid enhances the repair of ultraviolet damaged dermal connective tissue. Connect Tissue Res. 1984;12:139–50.Google Scholar
  14. 14.
    Goodman DS. Vitamin A and retinoids in health and disease. N Engl J Med. 1984;310(16):1023–31.Google Scholar
  15. 15.
    Noy N. Interactions of retinoids with lipid bilayers and with membranes. In: Livrea MA, Packer L, editors. Retinoids. New York: Marcel Dekker; 1993. p. 17–27.Google Scholar
  16. 16.
    Duell EA, Derguini F, Kang S, Elder JT, Voorhees JJ. Extraction of human epidermis treated with retinol yields retro-retinoids in addition to free retinol and retinyl esters. J Invest Dermatol. 1996;107:178–82.Google Scholar
  17. 17.
    Kafi R, Swak HS, Schumacher WE, Cho S, Hanft VN, Hamilton TA, et al. Improvement of naturally aged skin with vitamin A (retinol). Arch Dermatol. 2007;143(5):606–12.Google Scholar
  18. 18.
    Hruza GJ. Retinol benefits naturally aged skin. J Watch Dermatol. 2007;6(6)Google Scholar
  19. 19.
    Arct J, Pytokowska K. Flavonoids as components of biologically active cosmeceuticals. Clin Dermatol. 2008;26:347–57.Google Scholar
  20. 20.
    Glazier MG, Bowman MA. A review of the evidence for the use of phytoestrogens as a replacement for traditional estrogen replacement therapy. Arch Intern Med. 2001;161:1161–72.Google Scholar
  21. 21.
    Friedman M, Brandon DL. Nutritional and health benefits of soy proteins. J Agric Food Chem. 2001;49(3):1069–86.Google Scholar
  22. 22.
    Sakai T, Kogiso M. Soy isoflavones and immunity. J Med Investig. 2008;55(3–4):167–73.Google Scholar
  23. 23.
    Sarkar FH, Li Y. Soy isoflavones and cancer prevention. Cancer Investig. 2003;21(5):817–8.Google Scholar
  24. 24.
    Omoni AO, Aluko RE. Soybean foods and their benefits: potential mechanisms of action. Nutr Rev. 2005;63(8):272–83.Google Scholar
  25. 25.
    Maheux R, Naud F, Rioux M, Grenier R, Lemay A, Guy J, et al. A randomized, double-blind, placebo-controlled study on the effect of conjugated estrogens on skin thickness. Am J Obstet Gynecol. 1994;170:642–9.Google Scholar
  26. 26.
    Wiseman H, O’Reilly JD, Adlercreutz H, Mallet AL, Bowey EA, Rowland IR, et al. Isoflavone phytoestrogens consumed in soy decrease F-2-isoprostane concentrations and increase resistance of low-density lipoprotein to oxidation in humans. Am J Clin Nutr. 2000;72:395–400.Google Scholar
  27. 27.
    Chen N, Scarpa R, Zhang L, Seiberg M, Lin CB. Nondenatured soy extracts reduce UVB-induced skin damage via multiple mechanisms. Photochem Photobiol. 2008;84(6):1551–9.Google Scholar
  28. 28.
    Hatcher H, Planalp R, Cho J, Torti FM, Torti SV. Curcumin: from ancient medicine to current clinical trials. Cell Mol Life Sci. 2008;65(11):1631–52.Google Scholar
  29. 29.
    Jagetia GC, Aggarwal BB. “Spicing up” of the immune system by curcumin. J Clin Immunol. 2007;27(1):19–35.Google Scholar
  30. 30.
    Egan ME, Pearson M, Weiner SA, Rajendran V, Rubin D, glockner-Pagel J, et al. Curcumin, a major constituent of turmeric, corrects cystic fibrosis defects. Science. 2004;304(5670):600–2.Google Scholar
  31. 31.
    Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269(2):199–225.Google Scholar
  32. 32.
    Katiyar SK, Korman NJ, Mukhtar H, Agarwal R. Protective effects of silymarin against photocarcinogenesis in a mouse skin model. J Natl Cancer Inst. 1997;89:556–66.Google Scholar
  33. 33.
    Katiyar SK. Silymarin and skin cancer prevention: anti-inflammatory, antioxidant and immunomodulatory effects (review). Int J Oncol. 2005;26(1):169–76.Google Scholar
  34. 34.
    Chatterjee L, Agarwal R, Mukhtar H. Ultraviolet B radiation-induced DNA lesions in mouse epidermis: an assessment sing a novel 32P-postlabeling technique. Biochem Biophys Res Commun. 1996;229:590–5.Google Scholar
  35. 35.
    Toklu HZ, Tunali-Akbay T, Erkanli G, Yuksel M, Ercan F, Sener G. Silymarin, the antioxidant component of Silybum marianum, protects against burn-induced oxidative skin injury. Burn. 2007;33(7):908–16.Google Scholar
  36. 36.
    Berardesca E, Cameli N, Cavallotti C, Levy JL, Pierard GE, de Paoli Ambrosi G. Combined effects of silymarin and methylsulfonylmethane in the management of rosacea: clinical and instrumental evaluation. J Cosmet Dermatol. 2008;7(1):8–14.Google Scholar
  37. 37.
    Pycnogenol. Drug information online: Accessed 7 Dec 2008.
  38. 38.
    Devaraj S, Vega-Lopez S, Kaul N, Schonlau F, Rohdewald P, Jialal I. Supplementation with a pine bark extract rich in polyphenols increases plasma antioxidant capacity and alters the plasma lipoprotein profile. Lipids. 2002;37:931–4.Google Scholar
  39. 39.
    Cesarone MR, Belcaro G, Rohdewald P, Pellegrini L, Ledda A, Vinciguerra G, et al. Improvement of diabetic microangiopathy with pycnogenol: a prospective, controlled study. Angiology. 2006;57(4):431–6.Google Scholar
  40. 40.
    Vinciguerra G, Belcaro G, Cesarone MR, Rohdewald P, Stuard S, Ricci A, et al. Cramps and muscular pain: prevention with pycnogenol in normal subjects, venous patients, athletes, claudicants and in diabetic microangiopathy. Angiology. 2006;57(3):331–9.Google Scholar
  41. 41.
    Cossins E, Lee R, Packer L. ESR studies of vitamin C regeneration, order of reactivity of natural source phytochemical preparations. Biochem Mol Biol Int. 1998;45:583–98.Google Scholar
  42. 42.
    Schonlau F. The cosmetic pycnogenol. J Appl Cosmetol. 2002;20:241–6.Google Scholar
  43. 43.
    Kim YJ, Kang KS, Yokozawa T. The anti-melanogenic effect of pycnogenol by its anti-oxidative actions. Food Chem Toxicol. 2008;46(7):2466–71.Google Scholar
  44. 44.
    Rona C, Vailati F, Berardesca D. The cosmetic treatment of wrinkles. J Cosmet Dermatol. 2004;3(1):26–34.Google Scholar
  45. 45.
    Joyeux M, Lobstein A, Anton R, Mortier F. Comparative antilipoperoxidant, antinecrotic and scavenging properties of terpenes and biflavones from Ginkgo and some flavonoids. Planta Med. 1995;61:126–9.Google Scholar
  46. 46.
    Kim SJ, Lim MH, Chun IK, Won YH. Effects of flavonoids of Ginkgo biloba on proliferation of human skin fibroblast. Skin Pharmacol. 1997;10:200–5.Google Scholar
  47. 47.
    Hsu S. Green tea and the skin. J Am Acad Dermatol. 2005;52:1049–59.Google Scholar
  48. 48.
    US FDA/CFSAN Letter Responding to Health Claim Petition dated January 27, 2004: Green tea and Reduced Risk of Cancer Health Claim (Docket number 2004Q-0083).Google Scholar
  49. 49.
    US FDA/CFSAN Qualified Health Claims: Letter of Denial Green Tea and Reduced Risk of Cardiovascular Disease (Docket number 2005Q-0297).Google Scholar
  50. 50.
    Katiyar SK, Elmets CA. Green tea and skin. Arch Dermatol. 2000;136:989–94.Google Scholar
  51. 51.
    Geria NM. Green, black or white, it fits beauty to a “t”. HAPPI. 2006:46–50.Google Scholar
  52. 52.
    Abstract 6. J Am Coll Nutr. 2006;25(5).Google Scholar
  53. 53.
    Abstract 7. J Am Coll Nutr. 2006;25(5).Google Scholar
  54. 54.
    Chui AD, Chan JL, Kern DG, et al. Double-blinded, placebo-controlled trial of green tea extracts in the clinical and histologic appearance of photoaging skin. Dermatol Surg. 2005;31(7 Pt 2):855–60.Google Scholar
  55. 55.
    Katiyar SK, Elmets CA, Agarwal R, et al. Protection against ultraviolet-B radiation-induced local and systemic suppression of contact hypersensitivity and edema responses in C3H/HeN mice by green tea polyphenols. Photochem Photobiol. 1995;62:855–61.Google Scholar
  56. 56.
    Elmets CA, Singh D, Tubesing K, Matsui MS, Katiyar SK, Mukhtar H. Green tea polyphenols as chemopreventive agents against cutaneous photodamage. J Am Acad Dermatol. 2001;44:425–32.Google Scholar
  57. 57.
    Katiyar SK, Afaq F, Perez A, Mukhtar H. Green tea polyphenol treatment to human skin prevents formation of ultraviolet light B-induced pyrimidine dimers in DNA. Clin Cancer Res. 2000;6:3864–9.Google Scholar
  58. 58.
    Ahmad N, Mukhtar H. Cutaneous photochemoprotection by green tea. A brief review. Skin Pharmacol Appl Ski Physiol. 2001;14:69–76.Google Scholar
  59. 59.
    Mukhtar H, Katiyar SK, Agarwal R. Green tea and skin – anticarcinogenic effects. J Invest Dermatol. 1994;102:3–7.Google Scholar
  60. 60.
    Jurenka JS. Therapeutic applications of pomegranate (Punica granatum L.): a review. Altern Med Rev. 2008;13(2):128–44.Google Scholar
  61. 61.
    Pacheco-Palencia LA, Noratto G, Hingorani L, Talcott ST, Mertens-Talcott SU. Protective effects of standardized pomegranate (Punica granatum L.) polyphenolic extract in ultraviolet-irradiated human skin fibroblasts. J Agric Food Chem. 2008;56(18):8434–41.Google Scholar
  62. 62.
    Aviram M, Rosenblat M, Gaitini D, Nitecki S, Hoffman A, Dornfeld L, et al. Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. Clin Nutr. 2004;23(3):423–33.Google Scholar
  63. 63.
    Aviram M, Dornfeld L, Rosenblat M, et al. Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein e-deficient mice. Am J Clin Nutr. 2000;71:1062–76.Google Scholar
  64. 64.
    Esmaillzadeh A, Tahbaz F, Gaieni I, Alavi-Majd H, Azadbakht L. Concentrated pomegranate juice improves profiles in diabetic patients with hyperlipidemia. J Med Food. 2004;7(3):305–8.Google Scholar
  65. 65.
    McKeown E. Aloe vera. Cosmet Toilet. 1987;102:64–5.Google Scholar
  66. 66.
    Waller T. Aloe vera. Cosmet Toilet. 1992;107:53–4.Google Scholar
  67. 67.
    Maenthaisong R, Chaiyakunapruk N, Niruntraporn S, Kongkaew C. The efficacy of aloe vera for burn wound healing: a systematic review. Burns. 2007;33(6):713–8.Google Scholar
  68. 68.
    Orafidiya LO, Agbani EO, Oyedele AO, Babalola OO, Onayemi O, Aiyedun FF. The effect of aloe vera gel on the anti-acne properties of the essential oil of Ocimum gratissimum Linn leaf-a preliminary clinical investigation. Int J Aromather. 2004;14(1):15–21.Google Scholar
  69. 69.
    Puvabanditsin P, Vongtongsri R. Efficacy of aloe vera cream in prevention and treatment of sunburn and suntan. J Med Assoc Thail. 2005;88(Suppl 4):S173–6.Google Scholar
  70. 70.
    Reuter J, Jocher A, Stump J, Grossjohann B, Franke G, Sshempp CM. Investigation of the anti-inflammatory potential of aloe vera gel (97.5%) in the ultraviolet erythema test. Skin Pharmacol Physiol. 2008;21(2):106–10.Google Scholar
  71. 71.
    Hoppe U, Bergemann J, Diembeck W, Ennen J, Gohla S, Harris I, et al. Coenzyme Q10, a cutaneous antioxidant and energizer. Biofactors. 1999;9(2–4):371–8.Google Scholar
  72. 72.
    Blatt T, Mundt C, Mummert C, Maksiuk T, Wolber R, Keyhani R, et al. Modulation of oxidative stresses in human aging skin. Z Gerontol Geriatr. 1999;32(2):83–8.Google Scholar
  73. 73.
    Sohal RS, Kamzalov S, Sumien N, Ferguson M, Rebrin I, Heinrich KR, et al. Effect of coenzyme Q10 intake on endogenous coenzyme Q content, mitochondrial electron transport chain, antioxidant defenses, and life span of mice. Free Radic Biol Med. 2006;40(3):480–7.Google Scholar
  74. 74.
    Passi S, DePita O, Grandinetti M, Simotti C, Littarru GP. The combined use of oral and topical lipophilic antioxidants increases their levels both in sebum and stratum corneum. Biofactors. 2003;18(1–4):289–97.Google Scholar
  75. 75.
    Fuller B, Smith D, Howerton A, Kern D. Anti-inflammatory effects of coQ10 and colorless carotenoids. J Cosmet Dermatol. 2006;5(1):30–8.Google Scholar
  76. 76.
    Espinal-Perez LE, Moncada B, Castanedo-Cazares JP. A double blind randomized trial of 5% ascorbic acid vs. 4% hydroquinone in melasma. Int J Dermatol. 2004;43(8):604–7.Google Scholar
  77. 77.
    Amer M, Metwalli M. Topical liquiritin improves melasma. Int J Dermatol. 2000;39(4):299–301.Google Scholar
  78. 78.
    Beitner H. Randomized, placebo-controlled, double blind study on the clinical efficacy of a cream containing 5% alpha-lipoic acid related to photoageing of facial skin. Br J Dermatol. 2003;149(4):841–9.Google Scholar
  79. 79.
    Lim JT. Treatment of melasma using kojic acid in a gel containing hydroquinone and glycolic acid. Dermatol Surg. 1999;25:282–4.Google Scholar
  80. 80.
    Garcia A, Fulton JE Jr. The combination of glycolic acid and hydroquinone or kojic acid for the treatment of melasma and related conditions. Dermatol Surg. 1996;22(5):443–7.Google Scholar
  81. 81.
    Choi S, Lee SK, Kim JE, et al. Aloesin inhibits hyperpigmentation induced by UV radiation. Clin Exp Dermatol. 2002;27:513–5.Google Scholar
  82. 82.
    Jones K, Hughes J, Hong M, et al. Modulation of melanogenesis by aloesin: a competitive inhibitor of tyrosinase. Pigment Cell Res. 2002;15:335–40.Google Scholar
  83. 83.
    Wang Z, Li X, Yang Z, He X, Tu J, Zhang T. Effects of aloesin on melanogenesis in pigmented skin equivalents. Int J Cosmet Sci. 2008;30(2):121–30.Google Scholar
  84. 84.
    Hori I, Nihei K, Kubo I. Structural criteria for depigmenting mechanism of arbutin. Phytother Res. 2004;18:475–9.Google Scholar
  85. 85.
    Jun SY, Park KM, Choi KW, Jang MK, Kang HY, Lee SH, et al. Inhibitory effects of arbutin-beta-glycosides synthesized from enzymatic transglycosylation for melanogenesis. Biotechnol Lett. 2008;30(4):743–8.Google Scholar
  86. 86.
    Fitzpatrick RE, Rostan EF. Reversal of photodamage with topical growth factors: a pilot study. J Cosmet Laser Ther. 2003;5:25–34.Google Scholar
  87. 87.
    Mehta RC, Fitzpatrick RE. Endogenous growth factors as cosmeceuticals. Dermatol Ther. 2007;20(5):350–9.Google Scholar
  88. 88.
    Atkin DH, Trookman NS, Rizer RL, Schreck LE, Ho ET, Gotz V, Ford RO, Mehta RC. Combination of physiologically balanced growth factors with antioxidants for reversal of facial photodamage. J Cosmet Laser Ther. 2010;12(1):14–20.Google Scholar
  89. 89.
    Adair JH, Parette MP, Altinoglu EI, Kester M. Nanoparticle alternatives for drug delivery. ACS Nano. 2010;4(9):4967–70.Google Scholar
  90. 90.
    Kellar RS, Hubka M, Rheins LA, et al. Hypoxic conditioned culture medium from fibroblasts grown under embryonic-like conditions supports healing following post-laser resurfacing. J Cosmet Dermatol. 2009;8:190–6.Google Scholar
  91. 91.
    Zimber MP, Mansbridge JN, Taylor M, et al. Human cell-conditioned media produced under embryonic-like conditions result in improved healing time after laser resurfacing. Aesthet Plast Surg. 2012;36:431–7.Google Scholar
  92. 92.
    Mansbridge JN, Liu K, Pinney RE, Patch R, Ratcliffe A, Naughton GK. Growth factors secreted by fibroblasts: role in healing diabetic foot ulcers. Diabetes Obes Metab. 1999;1:265–79.Google Scholar
  93. 93.
    Bruce S, Karnik J, Dryer L, Burkholder D. Anti-aging proof of concept study: results and summary. J Drugs Dermatol. 2014;13:1074–81.Google Scholar
  94. 94.
    Gold MH, Biron J. A novel skin cream containing a mixture of human growth factors and cytokines for the treatment of adverse events associated with photodynamic therapy. J Drugs Dermatol. 2006;5:796–8.Google Scholar
  95. 95.
    Zettersten EM, Ghadially R, Feingold KR, Crumrine D, Elias PM. Optimal ratios of topical stratum corneum lipids improve barrier recovery in chronologically aged skin. J Am Acad Dermatol. 1997;37(3 Pt 1):403–8.Google Scholar
  96. 96.
    Vielhaber G, Lange S, Ley J, Koch O. N-palmitoyl-4-hydroxy-L-proline palmityl ester: a pseudoceramide that provides efficient skin barrier repair and protection. IFSCC Magazine. 2005;8.Google Scholar
  97. 97.
    Veraldi S, De Micheli P, Schianchi R, Lunardon L. Treatment of pruritus in mild-to-moderate atopic dermatitis with a topical non-steroidal agent. J Drugs Dermatol. 2009;8(6):537–9.Google Scholar
  98. 98.
    Mizushima H, Fukasawa J, Suzuki T. Phase behavior of artificial stratum corneum lipids containing a synthetic pseudo-ceramide: a study of the function of cholesterol. J Lipid Res. 1996;37:361–7. [PubMed: 9026533].Google Scholar
  99. 99.
    Park BD, Youm JK, Jeong SK, Choi EH, Ahn SH, Lee SH. The characterization of molecular organization of multilamellar emulsions containing pseudoceramide and type III synthetic ceramide. J Invest Dermatol. 2003;121:794–801. [PubMed: 14632198].Google Scholar
  100. 100.
    Noli C, Della Valle MF, Miolo A, Medori C, Schievano C. Efficacy of ultra-micronized palmitoylethanolamide in canine atopic dermatitis: an open-label multi-centre study. Skinalia Clinical Research Group. Vet Dermatol. 2015;26(6):432–40. e101.Google Scholar
  101. 101.
    Eberlein B, Eicke C, Reinhardt HW, Ring J. Adjuvant treatment of atopic eczema: assessment of an emollient containing N-palmitoylethanolamine (ATOPA study). J Eur Acad Dermatol Venereol. 2008;22(1):73–82.Google Scholar
  102. 102.
    Facci L, Toso RD, Romanello S, Buriani A, Skaper SD, Leon A. Mast cells express a peripheral cannabinoid receptor with differential sensitivity to anandamide andpalmitoylethanolamide. Proc Natl Acad Sci U S A. 1995;92:3376–80.Google Scholar
  103. 103.
    Ständer S, Schmelz M, Metze D, Luger T, Rukwied R. Distribution of cannabinoid receptor 1 (CB1) and 2 (CB2) on sensory nerve fibers and adnexal structures in human skin. J Dermatol Sci. 2005;38:177–88.Google Scholar
  104. 104.
    Nassiri-Asl M, Hosseinzadeh H. Review of the pharmacological effects of Vitis vinifera (Grape) and its bioactive compounds. Phytother Res. 2009;23(9):1197–204.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  1. 1.Dermatology Consulting Services, PLLCHigh PointUSA

Personalised recommendations