Advertisement

Fraction Images Applications

  • Yosio Edemir Shimabukuro
  • Flávio Jorge Ponzoni
Chapter
Part of the Springer Remote Sensing/Photogrammetry book series (SPRINGERREMO)

Abstract

Examples of fraction image application are given for mapping projects of large areas of the Earth’s surface such as the operational PRODES project by INPE, which aims to calculate rates of deforestation in the Brazilian Amazon.

Keywords

PRODES Vegetation mapping DETER Deforestation estimation 

References

  1. Achard, F., Eva, H. D., Stibig, H. J., Mayaux, P., Gallego, J., Richards, T., & Malingreau, J. P. (2002). Determination of deforestation rates of the world’s humid tropical forests. Science, 297, 999–1002.CrossRefGoogle Scholar
  2. Anderson, L. O. (2004). Classificação e monitoramento da cobertura vegetal de Mato Grosso utilizando dados multitemporais do sensor MODIS. 247 f. Dissertação (Mestrado em Sensoriamento Remoto) – Instituto Nacional de Pesquisas Espaciais, São José dos Campos. INPE-12290-TDI/986.Google Scholar
  3. Asner, G. P., Knapp, D. E., Broadbent, E. N., Oliveira, P. J. C., Keller, M., & Silva, J. N. (2005). Selective logging in the Brazilian Amazon. Science, 310, 480–482.CrossRefGoogle Scholar
  4. Brown, I. F., Schroeder, W., Setzer, A., Maldonado, M., Pantoja, N., Duarte, A., & Marengo, J. (2006). Monitoring fires in southwestern Amazonian rain forests. EOS Transactions, 87(26), 253–259.CrossRefGoogle Scholar
  5. Cochrane, M. A., Alencar, A., Schulze, M. D., Souza, C. M., Jr., Nepstad, D. C., Lefebvre, P., & Davidson, E. A. (1999). Positive feedbacks on the fire dynamic of closed canopy tropical forests. Science, 284, 1832–1835.CrossRefGoogle Scholar
  6. Fearnside, P. M. (1993). Deforestation in Brazilian Amazonia: The effect of population and land tenure. Ambio, 22(8), 537–545.Google Scholar
  7. Grogan, J., Jennings, S. B., Landis, R. M., Schulze, M., Baima, A. M. V., Lopes, J. C. A., Norghauer, J. M., Oliveira, L. R., Pantoja, F., Pinto, D., Silva, J. N. M., Vidal, E., & Zimmerman, B. L. (2008). What loggers leave behind: Impacts on big-leaf mahogany (Swietenia macrophylla) commercial populations and potential for post-logging recovery in the Brazilian Amazon. Forest Ecology and Management, 255, 269–281.CrossRefGoogle Scholar
  8. INPE – Instituto Nacional de Pesquisas Espaciais. (2002). Monitoring of the Brazilian Amazonian forest by satellite, 2000-2001 (p. 21). São José dos Campos.Google Scholar
  9. Mahar, D. (1988). Government policies and deforestation in Brazil’s Amazon Region. Washington, D.C.: World Bank.Google Scholar
  10. Matricardi, E. A. T., Skole, D. L., Pedlowski, M. A., Chomentowski, W., & Fernandes, L. C. (2010). Assessment of tropical forest degradation by selective logging and fire using Landsat imagery. Remote Sensing of Environment, 114, 1117–1129.CrossRefGoogle Scholar
  11. Moran, E. F. (1981). Developing the Amazon. Bloomington: Indiana University Press.Google Scholar
  12. Moran, E. F. (1993). Deforestation and land use in the Brazilian Amazon. Human Ecology, 21(1), 1–21.CrossRefGoogle Scholar
  13. Moran, E. F., Brondizio, E., Mausel, P., & Wu, Y. (1994). Integrating Amazonian vegetation, land-use, and satellite data. Bioscience, 44(5), 329–338.CrossRefGoogle Scholar
  14. Nepstad, D. C., Klink, C. A., Uhl, C., Vieira, I. C., Lefebvre, P., Pedlowski, M., Matricardi, E., Negreiros, G., Brown, I. F., Amaral, E., Homma, A., & Walker, R. (1997). Land-use in Amazonia and the Cerrado of Brazil. Ciência e Cultura Journal of the Brazilian Association for the Advancement of Science, 49(1/2), 73–86.Google Scholar
  15. Shimabukuro, Y. E., & Smith, J. A. (1991). The least-squares mixing models to generate fraction images derived from remote sensing multispectral data. IEEE Transactions on Geoscience and Remote Sensing, 29, 16–20.CrossRefGoogle Scholar
  16. Shimabukuro, Y. E., Batista, G. T., Mello, E. M. K., Moreira, J. C., & Duarte, V. (1998). Using shade fraction image segmentation to evaluate deforestation in Landsat Thematic Mapper images of the Amazon region. International Journal of Remote Sensing, 19(3), 535–541.CrossRefGoogle Scholar
  17. Shimabukuro, Y. E., Duarte, V., Anderson, L. O., Valeriano, D. M., Arai, E., & Freitas, R. M. (2006). Near real time detection of deforestation in the Brazilian Amazon using MODIS imagery. Revista Ambi‑Agua, 1, 37–47.CrossRefGoogle Scholar
  18. Shimabukuro, Y. E., Duarte, V., Arai, E., Freitas, R. M., Lima, A., Valeriano, D. M., Brown, I. F., & Maldonado, M. L. R. (2009). Fraction images derived from Terra MODIS data for mapping burnt areas in Brazilian Amazonia. International Journal of Remote Sensing, 30, 1537–1546.CrossRefGoogle Scholar
  19. Shimabukuro, Y. E., Beuchle, R., Grecchi, R. C., & Achard, F. (2014). Assessment of forest degradation in Brazilian Amazon due to selective logging and fires using time series of fraction images derived from Landsat ETM+ images. Remote Sensing Letters, 5, 773–782.CrossRefGoogle Scholar
  20. Skole, D., & Tucker, C. (1993). Tropical deforestation and habitat fragmentation in the Amazon: Satellite data from 1978 to 1988. Science, 260, 1905–1910.CrossRefGoogle Scholar
  21. Skole, D. L., Chomentowski, W. H., Salas, W. A., & Nobre, A. D. (1994). Physical and human dimensions of deforestation in Amazonia. Bioscience, 44(5), 14–322.CrossRefGoogle Scholar
  22. Tardin, A. T., Lee, D. C. L., Santos, R. J. R., Assis, O. R., Barbosa, M. P. S., Moreira, M. L., Pereira, M. T., Silva, D., & Filho, C. P. (1980). Subprojeto desmatamento, Convênio IBDF/CNPq/INPE, Rel. In Técnico INPE-1649-RPE/103.Google Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yosio Edemir Shimabukuro
    • 1
  • Flávio Jorge Ponzoni
    • 1
  1. 1.Remote Sensing DivisionNational Institute for Space ResearchSão José dos CamposBrazil

Personalised recommendations