Orbital Sensors

  • Yosio Edemir Shimabukuro
  • Flávio Jorge Ponzoni
Part of the Springer Remote Sensing/Photogrammetry book series (SPRINGERREMO)


The main technical characteristics of some more familiar sensors by the remote sensing community are presented in order to allow users to compare the possibilities of application of the linear spectral mixture models.


Earth observation sensors Landsat MODIS HRV 


  1. Dietz, A., Wohner, C., & Kuenzer, C. (2012). European snow cover characteristics between 2000 and 2011 derived from improved MODIS daily snow cover products. International Journal of Remote Sensing, 4, 2432–2454.CrossRefGoogle Scholar
  2. Dietz, A., Kuenzer, C., & Conrad, C. (2013). Snow cover variability in Central Asia between 2000 and 2011 derived from improved MODIS daily snow cover products. International Journal of Remote Sensing, 34(11), 3879–3902.CrossRefGoogle Scholar
  3. Gessner, U., Machwitz, M., Esch, T., Tillack, A., Naeimi, V., Kuenzer, C., & Dech, S. (2015). Multi-sensor mapping of West African land cover using MODIS, ASAR and TanDEM-X/TerraSAR-X data. Journal of Remote Sensing Environment, 164, 282–297.CrossRefGoogle Scholar
  4. Klein, I., Gessner, U., & Kuenzer, C. (2012). Regional land cover mapping in Central Asia using MODIS time series. Applied Geography, 35, 1–16.CrossRefGoogle Scholar
  5. Klein, I., Dietz, A., Gessner, U., Dech, S., & Kuenzer, C. (2015). Results of the global waterpack: A novel product to assess inland water body dynamics on a daily basis. Remote Sensing Letters, 6(1), 78–87.CrossRefGoogle Scholar
  6. Kuenzer, C., Klein, I., Ullmann, T., Foufoula-Georgiou, E., Baumhauer, R., & Dech, S. (2015). Remote sensing of river delta inundation: Exploiting the potential of coarse spatial resolution, temporally-dense MODIS time series. Remote Sensing, 7, 8516–8542.CrossRefGoogle Scholar
  7. Leinenkugel, P., Wolters, M., Oppelt, N., & Kuenzer, C. (2014). Tree cover and forest cover dynamics in the Mekong Basin from 2001 to 2011. Remote Sensing of Environment, 158, 376–392.CrossRefGoogle Scholar
  8. Lu, L., Kuenzer, C., Guo, H., Li, Q., Long, T., & Li, X. (2014). A novel land cover classification map based on MODIS time-series in Nanjing, China. Remote Sensing, 6, 3387–3408.CrossRefGoogle Scholar
  9. Lu, L., Kuenzer, C., Wang, C., Guo, H., & Li, Q. (2015). Evaluation of three MODIS-derived vegetation index time series for dry land vegetation dynamics monitoring. Remote Sensing, 7, 7597–7614.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yosio Edemir Shimabukuro
    • 1
  • Flávio Jorge Ponzoni
    • 1
  1. 1.Remote Sensing DivisionNational Institute for Space ResearchSão José dos CamposBrazil

Personalised recommendations