Advertisement

Background

  • Yosio Edemir Shimabukuro
  • Flávio Jorge Ponzoni
Chapter
Part of the Springer Remote Sensing/Photogrammetry book series (SPRINGERREMO)

Abstract

The main aspects related to the so-called spectral mixture under the perspective of orbital imagery carried out by Earth observation sensors are presented and contextualized.

Keywords

Spectral mixture Spatial resolution Orbital imagery 

References

  1. Adams, J. B., & Adams, J. D. (1984). Geologic mapping using Landsat MSS and TM images: Removing vegetation by modeling spectral mixtures – remote sensing for exploration geology. In Proceedings of the third thematic conference: International symposium on remote sensing of environment, Colorado (pp. 16–19). Colorado Springs.Google Scholar
  2. Adams, J. B., Smith, M. O., & Johnson, P. E. (1986). Spectral mixture modeling: A new analysis of rock and soil types at the Viking Lander 1 site. Journal of Geophysical Research, 91(B8), 8098–8112.CrossRefGoogle Scholar
  3. Alcântara, E. H., Barbosa, C. C. F., Stech, J. L., Novo, E. M. M., & Shimabukuro, Y. E. (2009). Improving the spectral unmixing algorithm to map water turbidity distributions. Environmental Modelling & Software, 24, 1051–1061.CrossRefGoogle Scholar
  4. Atkinson, P., Cutler, M., & Lewis, H. (1997). Mapping subpixel proportional land cover with AVHRR imagery. International Journal of Remote Sensing, 18, 917–935.CrossRefGoogle Scholar
  5. Bastin, L. (1997). Comparison of fuzzy c-means classification, linear mixture modeling and MLC probabilities as tools for unmixing coarse pixels. International Journal of Remote Sensing, 18, 3629–3648.CrossRefGoogle Scholar
  6. Boardman, J. W.(1989). Inversion of imaging spectrometry data using singular value decomposition. In: Proceedings of the 12th Canadian symposium on remote sensing. (Vol. 4, pp. 2069–2072).Google Scholar
  7. Detchmendy, D. M., & Pace, W. H. (1972). A model spectral signature variability for mixtures. In F. Shahrokhi (Ed.), Remote sensing of Earth resources (Vol. 1, pp. 596–620). Tullahoma: The University of Tennessee.Google Scholar
  8. Foody, G. M., Lucas, R. M., Curran, P. J., & Honzak, M. (1997). Non-linear mixture modeling without end-members using an artificial neural network. International Journal of Remote Sensing, 18, 937–953.CrossRefGoogle Scholar
  9. García-Haro, F., Sommner, S., & Kemper, T. (2005). A new tool for variable multiple endmember spectral mixture analysis (VMESMA). International Journal of Remote Sensing, 26, 2135–2162.CrossRefGoogle Scholar
  10. Heimes, F. J. (1977). Effects of scene proportions on spectral reflectance in Lodgepole pine. Dissertation (Master of Science) – Colorado State University, Fort Collins.Google Scholar
  11. Horwitz, H. M., Nalepka, R. F., Ryde, P. D., & Morgenstern, J. P. (1971). Estimating the proportions of objects within a single resolution element of a multispectral scanner. In Proceedings of the 7th international symposium on remote sensing of environment, May 7–21, 1971 (pp. 1307–1320). Ann Arbor: Willow Run Laboratories.Google Scholar
  12. Novo, E. M. L. M., & Shimabukuro, Y. E. (1994). Spectral mixture analysis of inland tropical waters. International Journal of Remote Sensing, 15(6), 1354–1356.CrossRefGoogle Scholar
  13. Pace, W. H., & Detchmendy, D. M. (1973). A fast algorithm for the decomposing of multispectral data into mixtures. In F. Shahrokhi (Ed.), Remote sensing of Earth resources (Vol. 2, pp. 831–847). Tullahoma: The University of Tennessee.Google Scholar
  14. Pearson, R. (1973). Remote multispectral sensing of biomass. Dissertation (Ph.D.) – Colorado State University, Fort Collins.Google Scholar
  15. Piromal, R. A. S. (2006). Avaliação do modelo 5-scale para simular valores de reflectância de unidades de paisagem da Floresta Nacional do Tapajós. 151 f. Dissertação (Mestrado em Sensoriamento Remoto) – São José dos Campos, Inpe. INPE-14645-TDI/205.Google Scholar
  16. Ranson, K. J. (1975). Computer assisted classification of mixtures with simulated spectral signatures. Dissertation (Master of Science) – Colorado State University, Fort Collins.Google Scholar
  17. Roberts, D. A., Smith, M., & Adams, J. (1993). Green vegetation, nonphotosynthetic vegetation, and soils in AVIRIS data. Remote Sensing of Environment, 44, 255–269.CrossRefGoogle Scholar
  18. Rosin, P. (2001). Robust pixel unmixing. IEEE Transactions on Geoscience and Remote Sensing, 39, 1978–1983.CrossRefGoogle Scholar
  19. Shimabukuro, Y. E. (1987). Shade images derived from linear mixing models of multispectral measurements of forested areas. (274 p.) Thesis (Doctor of Phylosophy) – Colorado State University, Fort Collins.Google Scholar
  20. Shimabukuro, Y. E., Batista, G. T., Mello, E. M. K., Moreira, J. C., & Duarte, V. (1998). Using shade fraction image segmentation to evaluate deforestation in Landsat Thematic Mapper images of the Amazon region. International Journal of Remote Sensing, 19(3), 535–541.CrossRefGoogle Scholar
  21. Singer, R. B., & Mccord, T. B. (1979). Mars: Large scale mixing of bright and dark materials and implications for analysis of spectral reflectance. In Proceedings of the 10th lunar and planetary science conference, Houston, Texas (pp. 1825–1848). Houston: Lunar and Planetary Institute.Google Scholar
  22. Smith, M. O., Johnson, P. E., & Adams, J. B. (1985). Quantitative determination of mineral types and abundances from reflectance spectra using principal component analysis. Journal of Geophysical Research, 90(S02), 797–804.CrossRefGoogle Scholar
  23. Ustin, S. L., Adams, J. B., Elvidge, C. D., Rejmanek, M., Rock, B. N., Smith, M. O., Thomas, R. W., & Woodward, R. A. (1986). Thematic mapper studies of semiarid shrub communities. Bioscience, 36(7), 446–452.CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2019

Authors and Affiliations

  • Yosio Edemir Shimabukuro
    • 1
  • Flávio Jorge Ponzoni
    • 1
  1. 1.Remote Sensing DivisionNational Institute for Space ResearchSão José dos CamposBrazil

Personalised recommendations