Advertisement

Calcific Aortic Valve Disease: Pathobiology, Basic Mechanisms, and Clinical Strategies

  • Payal Vyas
  • Joshua D. Hutcheson
  • Elena AikawaEmail author
Chapter

Abstract

Calcific aortic valve disease (CAVD) is a leading cause of cardiovascular morbidity and mortality, and its prevalence is expected to increase in the aging population of the developed world. Currently, no noninvasive therapeutic strategies exist to prevent or treat CAVD. Though the advent of new valve replacement technologies have improved clinical outcomes, these techniques remain suboptimal for the two populations most at risk for valvular complications—pediatric and elderly patients. Recent advances in basic research have shown that CAVD arises through active cellular mechanisms, offering hope that drugs can be developed to target relevant pathways and provide new clinical options for CAVD patients. Translating these benchtop discoveries to clinical realities, however, will require both a holistic understanding of how targetable cellular level processes affect valve tissue function and the ability to identify early CAVD development in patients. This chapter addresses this translation by reviewing the current state of CAVD research and the ongoing efforts to meet the clinical need.

Keywords

Aortic valve Calcification Aortic stenosis Calcific aortic valve disease Aortic valve remodeling Disease mechanisms Fibrocalcific remodeling 

References

  1. 1.
    Stewart BF, et al. Clinical factors associated with calcific aortic valve disease. Cardiovascular Health study. J Am Coll Cardiol. 1997;29(3):630–4.PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Otto CM, et al. Association of aortic-valve sclerosis with cardiovascular mortality and morbidity in the elderly. N Engl J Med. 1999;341(3):142–7.PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Ross J Jr, Braunwald E. Aortic stenosis. Circulation. 1968;38(1 Suppl):61–7.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Nishimura RA, et al. 2014 AHA/ACC Guideline for the Management of Patients with Valvular Heart Disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. Circulation. 2014;129(23):2440–92.PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Lindman BR, Bonow RO, Otto CM. Current management of calcific aortic stenosis. Circ Res. 2013;113(2):223–37.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Otto CM. Timing of aortic valve surgery. Heart. 2000;84(2):211–8.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Lloyd-Jones D, et al. Heart disease and stroke statistics--2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2009;119(3):e21–181.PubMedPubMedCentralGoogle Scholar
  8. 8.
    Rahimtoola SH. Choice of prosthetic heart valve in adults an update. J Am Coll Cardiol. 2010;55(22):2413–26.PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Pibarot P, Dumesnil JG. Prosthetic heart valves: selection of the optimal prosthesis and long-term management. Circulation. 2009;119(7):1034–48.PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Sacks MS, Schoen FJ. Collagen fiber disruption occurs independent of calcification in clinically explanted bioprosthetic heart valves. J Biomed Mater Res. 2002;62(3):359–71.PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Schoen FJ, Levy RJ. Calcification of tissue heart valve substitutes: progress toward understanding and prevention. Ann Thorac Surg. 2005;79(3):1072–80.PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Brennan JM, et al. Early anticoagulation of bioprosthetic aortic valves in older patients: results from the Society of Thoracic Surgeons Adult Cardiac Surgery National Database. J Am Coll Cardiol. 2012;60(11):971–7.PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Leon MB, et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N Engl J Med. 2010;363(17):1597–607.PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Clavel MA, et al. Comparison between transcatheter and surgical prosthetic valve implantation in patients with severe aortic stenosis and reduced left ventricular ejection fraction. Circulation. 2010;122(19):1928–36.PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Smith CR, et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N Engl J Med. 2011;364(23):2187–98.PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Daneault B, et al. Stroke associated with surgical and transcatheter treatment of aortic stenosis: a comprehensive review. J Am Coll Cardiol. 2011;58(21):2143–50.PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Rajamannan NM, et al. Calcific aortic valve disease: not simply a degenerative process: a review and agenda for research from the National Heart and Lung and Blood Institute Aortic Stenosis Working Group. Executive summary: calcific aortic valve disease-2011 update. Circulation. 2011;124(16):1783–91.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Leopold JA. Cellular mechanisms of aortic valve calcification. Circ Cardiovasc Interv. 2012;5(4):605–14.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Misfeld M, Sievers HH. Heart valve macro- and microstructure. Philos Trans R Soc Lond Ser B Biol Sci. 2007;362(1484):1421–36.CrossRefGoogle Scholar
  20. 20.
    Thubrikar M, et al. The design of the normal aortic valve. Am J Phys. 1981;241(6):H795–801.Google Scholar
  21. 21.
    Yacoub MH, et al. The aortic outflow and root: a tale of dynamism and crosstalk. Ann Thorac Surg. 1999;68(3 Suppl):S37–43.PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Anderson RH, et al. The myth of the aortic annulus: the anatomy of the subaortic outflow tract. Ann Thorac Surg. 1991;52(3):640–6.PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Anderson RH. Clinical anatomy of the aortic root. Heart. 2000;84(6):670–3.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Roberts WC. The structure of the aortic valve in clinically isolated aortic stenosis: an autopsy study of 162 patients over 15 years of age. Circulation. 1970;42(1):91–7.PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Katayama S, et al. The sinus of Valsalva relieves abnormal stress on aortic valve leaflets by facilitating smooth closure. J Thorac Cardiovasc Surg. 2008;136(6):1528–35, 1535 e1.PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Balachandran K, Sucosky P, Yoganathan AP. Hemodynamics and mechanobiology of aortic valve inflammation and calcification. Int J Inflam. 2011;2011:263870.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Butcher JT, Mahler GJ, Hockaday LA. Aortic valve disease and treatment: the need for naturally engineered solutions. Adv Drug Deliv Rev. 2011;63(4–5):242–68.PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Thubrikar M, Bosher LP, Nolan SP. The mechanism of opening of the aortic valve. J Thorac Cardiovasc Surg. 1979;77(6):863–70.PubMedPubMedCentralGoogle Scholar
  29. 29.
    Aikawa E, et al. Human semilunar cardiac valve remodeling by activated cells from fetus to adult: implications for postnatal adaptation, pathology, and tissue engineering. Circulation. 2006;113(10):1344–52.PubMedCrossRefGoogle Scholar
  30. 30.
    Sacks MS, David Merryman W, Schmidt DE. On the biomechanics of heart valve function. J Biomech. 2009;42(12):1804–24.PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Schoen FJ. Aortic valve structure-function correlations: role of elastic fibers no longer a stretch of the imagination. J Heart Valve Dis. 1997;6(1):1–6.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Schoen FJ. Evolving concepts of cardiac valve dynamics: the continuum of development, functional structure, pathobiology, and tissue engineering. Circulation. 2008;118(18):1864–80.PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Stephens EH, Chu CK, Grande-Allen KJ. Valve proteoglycan content and glycosaminoglycan fine structure are unique to microstructure, mechanical load and age: relevance to an age-specific tissue-engineered heart valve. Acta Biomater. 2008;4(5):1148–60.PubMedCrossRefPubMedCentralGoogle Scholar
  34. 34.
    Stella JA, Sacks MS. On the biaxial mechanical properties of the layers of the aortic valve leaflet. J Biomech Eng. 2007;129(5):757–66.PubMedCrossRefGoogle Scholar
  35. 35.
    Vesely I, Noseworthy R. Micromechanics of the fibrosa and the ventricularis in aortic valve leaflets. J Biomech. 1992;25(1):101–13.PubMedCrossRefGoogle Scholar
  36. 36.
    Merryman WD, et al. The effects of cellular contraction on aortic valve leaflet flexural stiffness. J Biomech. 2006;39(1):88–96.PubMedCrossRefGoogle Scholar
  37. 37.
    Zhao R, Sider KL, Simmons CA. Measurement of layer-specific mechanical properties in multilayered biomaterials by micropipette aspiration. Acta Biomater. 2011;7(3):1220–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Sacks MS, Smith DB, Hiester ED. The aortic valve microstructure: effects of transvalvular pressure. J Biomed Mater Res. 1998;41(1):131–41.PubMedCrossRefGoogle Scholar
  39. 39.
    Stella JA, Liao J, Sacks MS. Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet. J Biomech. 2007;40(14):3169–77.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Cimini M, Rogers KA, Boughner DR. Smoothelin-positive cells in human and porcine semilunar valves. Histochem Cell Biol. 2003;120(4):307–17.PubMedCrossRefGoogle Scholar
  41. 41.
    Chester AH, et al. Localisation and function of nerves in the aortic root. J Mol Cell Cardiol. 2008;44(6):1045–52.PubMedCrossRefGoogle Scholar
  42. 42.
    Marron K, et al. Innervation of human atrioventricular and arterial valves. Circulation. 1996;94(3):368–75.PubMedCrossRefGoogle Scholar
  43. 43.
    Liu AC, Joag VR, Gotlieb AI. The emerging role of valve interstitial cell phenotypes in regulating heart valve pathobiology. Am J Pathol. 2007;171(5):1407–18.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Rabkin E, et al. Activated interstitial myofibroblasts express catabolic enzymes and mediate matrix remodeling in myxomatous heart valves. Circulation. 2001;104(21):2525–32.PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Rabkin-Aikawa E, et al. Dynamic and reversible changes of interstitial cell phenotype during remodeling of cardiac valves. J Heart Valve Dis. 2004;13(5):841–7.PubMedGoogle Scholar
  46. 46.
    Yperman J, et al. Molecular and functional characterization of ovine cardiac valve-derived interstitial cells in primary isolates and cultures. Tissue Eng. 2004;10(9–10):1368–75.PubMedCrossRefGoogle Scholar
  47. 47.
    Taylor PM, et al. The cardiac valve interstitial cell. Int J Biochem Cell Biol. 2003;35(2):113–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Walker GA, et al. Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circ Res. 2004;95(3):253–60.PubMedCrossRefGoogle Scholar
  49. 49.
    Merryman WD, et al. Correlation between heart valve interstitial cell stiffness and transvalvular pressure: implications for collagen biosynthesis. Am J Physiol Heart Circ Physiol. 2006;290(1):H224–31.PubMedCrossRefGoogle Scholar
  50. 50.
    Ku CH, et al. Collagen synthesis by mesenchymal stem cells and aortic valve interstitial cells in response to mechanical stretch. Cardiovasc Res. 2006;71(3):548–56.PubMedCrossRefGoogle Scholar
  51. 51.
    Schneider PJ, Deck JD. Tissue and cell renewal in the natural aortic valve of rats: an autoradiographic study. Cardiovasc Res. 1981;15(4):181–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Schoen FJ. Mechanisms of function and disease of natural and replacement heart valves. Annu Rev Pathol. 2012;7:161–83.PubMedCrossRefGoogle Scholar
  53. 53.
    Frater RW, et al. Endothelial covering of biological artificial heart valves. Ann Thorac Surg. 1992;53(3):371–2.PubMedCrossRefGoogle Scholar
  54. 54.
    Butcher JT, Simmons CA, Warnock JN. Mechanobiology of the aortic heart valve. J Heart Valve Dis. 2008;17(1):62–73.PubMedGoogle Scholar
  55. 55.
    Butcher JT, et al. Transcriptional profiles of valvular and vascular endothelial cells reveal phenotypic differences: influence of shear stress. Arterioscler Thromb Vasc Biol. 2006;26(1):69–77.PubMedCrossRefGoogle Scholar
  56. 56.
    Deck JD. Endothelial cell orientation on aortic valve leaflets. Cardiovasc Res. 1986;20(10):760–7.PubMedCrossRefGoogle Scholar
  57. 57.
    Butcher JT, et al. Unique morphology and focal adhesion development of valvular endothelial cells in static and fluid flow environments. Arterioscler Thromb Vasc Biol. 2004;24(8):1429–34.PubMedCrossRefGoogle Scholar
  58. 58.
    Kilner PJ, et al. Asymmetric redirection of flow through the heart. Nature. 2000;404(6779):759–61.PubMedCrossRefGoogle Scholar
  59. 59.
    Simmons CA, et al. Spatial heterogeneity of endothelial phenotypes correlates with side-specific vulnerability to calcification in normal porcine aortic valves. Circ Res. 2005;96(7):792–9.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Guerraty MA, et al. Hypercholesterolemia induces side-specific phenotypic changes and peroxisome proliferator-activated receptor-gamma pathway activation in swine aortic valve endothelium. Arterioscler Thromb Vasc Biol. 2010;30(2):225–31.PubMedCrossRefGoogle Scholar
  61. 61.
    Mohler ER 3rd. Mechanisms of aortic valve calcification. Am J Cardiol. 2004;94(11):1396–402. A6PubMedCrossRefGoogle Scholar
  62. 62.
    Mohler ER 3rd, et al. Bone formation and inflammation in cardiac valves. Circulation. 2001;103(11):1522–8.PubMedCrossRefGoogle Scholar
  63. 63.
    Wylie-Sears J, et al. Mitral valve endothelial cells with osteogenic differentiation potential. Arterioscler Thromb Vasc Biol. 2011;31(3):598–607.PubMedCrossRefGoogle Scholar
  64. 64.
    Bischoff J, Aikawa E. Progenitor cells confer plasticity to cardiac valve endothelium. J Cardiovasc Transl Res. 2011;4(6):710–9.PubMedCrossRefGoogle Scholar
  65. 65.
    Hjortnaes J, et al. Valvular interstitial cells suppress calcification of valvular endothelial cells. Atherosclerosis. 2015;242(1):251–60.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Chakraborty S, et al. Shared gene expression profiles in developing heart valves and osteoblast progenitor cells. Physiol Genomics. 2008;35(1):75–85.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Butcher JT, Nerem RM. Valvular endothelial cells regulate the phenotype of interstitial cells in co-culture: effects of steady shear stress. Tissue Eng. 2006;12(4):905–15.PubMedCrossRefGoogle Scholar
  68. 68.
    Mohler ER 3rd, et al. Identification and characterization of calcifying valve cells from human and canine aortic valves. J Heart Valve Dis. 1999;8(3):254–60.PubMedGoogle Scholar
  69. 69.
    Hutcheson JD, Aikawa E, Merryman WD. Potential drug targets for calcific aortic valve disease. Nat Rev Cardiol. 2014;11(4):218–31.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Hjortnaes J, et al. Arterial and aortic valve calcification inversely correlates with osteoporotic bone remodelling: a role for inflammation. Eur Heart J. 2010;31(16):1975–84.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Rajamannan NM, Edwards WD, Spelsberg TC. Hypercholesterolemic aortic-valve disease. N Engl J Med. 2003;349(7):717–8.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Helske S, et al. Aortic valve stenosis: an active atheroinflammatory process. Curr Opin Lipidol. 2007;18(5):483–91.PubMedCrossRefPubMedCentralGoogle Scholar
  73. 73.
    Mohler ER 3rd. Are atherosclerotic processes involved in aortic-valve calcification? Lancet. 2000;356(9229):524–5.PubMedCrossRefPubMedCentralGoogle Scholar
  74. 74.
    Messier RH Jr, et al. Dual structural and functional phenotypes of the porcine aortic valve interstitial population: characteristics of the leaflet myofibroblast. J Surg Res. 1994;57(1):1–21.PubMedCrossRefGoogle Scholar
  75. 75.
    Mulholland DL, Gotlieb AI. Cell biology of valvular interstitial cells. Can J Cardiol. 1996;12(3):231–6.PubMedGoogle Scholar
  76. 76.
    Dilley RJ, McGeachie JK, Prendergast FJ. A review of the proliferative behaviour, morphology and phenotypes of vascular smooth muscle. Atherosclerosis. 1987;63(2–3):99–107.PubMedCrossRefGoogle Scholar
  77. 77.
    Orr AW, et al. Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis. J Vasc Res. 2010;47(2):168–80.PubMedCrossRefGoogle Scholar
  78. 78.
    Merryman WD, et al. Differences in tissue-remodeling potential of aortic and pulmonary heart valve interstitial cells. Tissue Eng. 2007;13(9):2281–9.PubMedCrossRefGoogle Scholar
  79. 79.
    Freeman RV, Crittenden G, Otto C. Acquired aortic stenosis. Expert Rev Cardiovasc Ther. 2004;2(1):107–16.PubMedCrossRefGoogle Scholar
  80. 80.
    Merryman WD, Schoen FJ. Mechanisms of calcification in aortic valve disease: role of mechanokinetics and mechanodynamics. Curr Cardiol Rep. 2013;15(5):355.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Otto CM, et al. Characterization of the early lesion of ‘degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies. Circulation. 1994;90(2):844–53.PubMedCrossRefPubMedCentralGoogle Scholar
  82. 82.
    O'Brien KD, et al. Apolipoproteins B, (a), and E accumulate in the morphologically early lesion of 'degenerative' valvular aortic stenosis. Arterioscler Thromb Vasc Biol. 1996;16(4):523–32.PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Yip CY, Simmons CA. The aortic valve microenvironment and its role in calcific aortic valve disease. Cardiovasc Pathol. 2011;20(3):177–82.PubMedCrossRefGoogle Scholar
  84. 84.
    Mehrabian M, Demer LL, Lusis AJ. Differential accumulation of intimal monocyte-macrophages relative to lipoproteins and lipofuscin corresponds to hemodynamic forces on cardiac valves in mice. Arterioscler Thromb. 1991;11(4):947–57.PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Thubrikar MJ, Aouad J, Nolan SP. Patterns of calcific deposits in operatively excised stenotic or purely regurgitant aortic valves and their relation to mechanical stress. Am J Cardiol. 1986;58(3):304–8.PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Hinton RB Jr, et al. Extracellular matrix remodeling and organization in developing and diseased aortic valves. Circ Res. 2006;98(11):1431–8.PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Chen JH, Simmons CA. Cell-matrix interactions in the pathobiology of calcific aortic valve disease: critical roles for matricellular, matricrine, and matrix mechanics cues. Circ Res. 2011;108(12):1510–24.PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Tanaka K, et al. Age-associated aortic stenosis in apolipoprotein E-deficient mice. J Am Coll Cardiol. 2005;46(1):134–41.PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Rajamannan NM, et al. Human aortic valve calcification is associated with an osteoblast phenotype. Circulation. 2003;107(17):2181–4.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Sabet HY, et al. Congenitally bicuspid aortic valves: a surgical pathology study of 542 cases (1991 through 1996) and a literature review of 2,715 additional cases. Mayo Clin Proc. 1999;74(1):14–26.PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Poggianti E, et al. Aortic valve sclerosis is associated with systemic endothelial dysfunction. J Am Coll Cardiol. 2003;41(1):136–41.PubMedCrossRefGoogle Scholar
  92. 92.
    Muller AM, et al. Expression of endothelial cell adhesion molecules on heart valves: up-regulation in degeneration as well as acute endocarditis. J Pathol. 2000;191(1):54–60.PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Shavelle DM, et al. Soluble intercellular adhesion molecule-1 (sICAM-1) and aortic valve calcification in the multi-ethnic study of atherosclerosis (MESA). J Heart Valve Dis. 2008;17(4):388–95.PubMedGoogle Scholar
  94. 94.
    Aikawa E, et al. Arterial and aortic valve calcification abolished by elastolytic cathepsin S deficiency in chronic renal disease. Circulation. 2009;119(13):1785–94.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Sorescu GP, et al. Bone morphogenic protein 4 produced in endothelial cells by oscillatory shear stress induces monocyte adhesion by stimulating reactive oxygen species production from a nox1-based NADPH oxidase. Circ Res. 2004;95(8):773–9.PubMedCrossRefGoogle Scholar
  96. 96.
    Sucosky P, et al. Altered shear stress stimulates upregulation of endothelial VCAM-1 and ICAM-1 in a BMP-4- and TGF-beta1-dependent pathway. Arterioscler Thromb Vasc Biol. 2009;29(2):254–60.PubMedCrossRefPubMedCentralGoogle Scholar
  97. 97.
    Mirzaie M, et al. Evidence of woven bone formation in heart valve disease. Ann Thorac Cardiovasc Surg. 2003;9(3):163–9.PubMedGoogle Scholar
  98. 98.
    Bosse K, et al. Endothelial nitric oxide signaling regulates Notch1 in aortic valve disease. J Mol Cell Cardiol. 2013;60:27–35.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Richards J, et al. Side-specific endothelial-dependent regulation of aortic valve calcification: interplay of hemodynamics and nitric oxide signaling. Am J Pathol. 2013;182(5):1922–31.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Riddle JM, Magilligan DJ Jr, Stein PD. Surface topography of stenotic aortic valves by scanning electron microscopy. Circulation. 1980;61(3):496–502.PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Armstrong EJ, Bischoff J. Heart valve development: endothelial cell signaling and differentiation. Circ Res. 2004;95(5):459–70.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Combs MD, Yutzey KE. Heart valve development: regulatory networks in development and disease. Circ Res. 2009;105(5):408–21.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Person AD, Klewer SE, Runyan RB. Cell biology of cardiac cushion development. Int Rev Cytol. 2005;243:287–335.PubMedCrossRefGoogle Scholar
  104. 104.
    Frid MG, Kale VA, Stenmark KR. Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis. Circ Res. 2002;90(11):1189–96.PubMedCrossRefPubMedCentralGoogle Scholar
  105. 105.
    Paranya G, et al. Aortic valve endothelial cells undergo transforming growth factor-beta-mediated and non-transforming growth factor-beta-mediated transdifferentiation in vitro. Am J Pathol. 2001;159(4):1335–43.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Balachandran K, et al. Cyclic strain induces dual-mode endothelial-mesenchymal transformation of the cardiac valve. Proc Natl Acad Sci U S A. 2011;108(50):19943–8.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Piera-Velazquez S, Li Z, Jimenez SA. Role of endothelial-mesenchymal transition (EndoMT) in the pathogenesis of fibrotic disorders. Am J Pathol. 2011;179(3):1074–80.PubMedPubMedCentralCrossRefGoogle Scholar
  108. 108.
    Kovacic JC, et al. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation. 2012;125(14):1795–808.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Dal-Bianco JP, et al. Active adaptation of the tethered mitral valve: insights into a compensatory mechanism for functional mitral regurgitation. Circulation. 2009;120(4):334–42.PubMedPubMedCentralCrossRefGoogle Scholar
  110. 110.
    Chaput M, et al. Mitral leaflet adaptation to ventricular remodeling: prospective changes in a model of ischemic mitral regurgitation. Circulation. 2009;120(11 Suppl):S99–103.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Aikawa E, et al. Multimodality molecular imaging identifies proteolytic and osteogenic activities in early aortic valve disease. Circulation. 2007;115(3):377–86.PubMedCrossRefGoogle Scholar
  112. 112.
    Deb A, et al. Bone marrow-derived myofibroblasts are present in adult human heart valves. J Heart Valve Dis. 2005;14(5):674–8.PubMedPubMedCentralGoogle Scholar
  113. 113.
    Visconti RP, et al. An in vivo analysis of hematopoietic stem cell potential: hematopoietic origin of cardiac valve interstitial cells. Circ Res. 2006;98(5):690–6.PubMedCrossRefGoogle Scholar
  114. 114.
    Hajdu Z, et al. Recruitment of bone marrow-derived valve interstitial cells is a normal homeostatic process. J Mol Cell Cardiol. 2011;51(6):955–65.PubMedPubMedCentralCrossRefGoogle Scholar
  115. 115.
    Chen JH, et al. Identification and characterization of aortic valve mesenchymal progenitor cells with robust osteogenic calcification potential. Am J Pathol. 2009;174(3):1109–19.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Helske S, et al. Possible role for mast cell-derived cathepsin G in the adverse remodelling of stenotic aortic valves. Eur Heart J. 2006;27(12):1495–504.PubMedCrossRefGoogle Scholar
  117. 117.
    Leskela HV, et al. Calcification and cellularity in human aortic heart valve tissue determine the differentiation of bone-marrow-derived cells. J Mol Cell Cardiol. 2006;41(4):642–9.PubMedCrossRefPubMedCentralGoogle Scholar
  118. 118.
    Gossl M, et al. Role of circulating osteogenic progenitor cells in calcific aortic stenosis. J Am Coll Cardiol. 2012;60(19):1945–53.PubMedPubMedCentralCrossRefGoogle Scholar
  119. 119.
    Egan KP, et al. Role for circulating osteogenic precursor cells in aortic valvular disease. Arterioscler Thromb Vasc Biol. 2011;31(12):2965–71.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Nomura A, et al. CD34-negative mesenchymal stem-like cells may act as the cellular origin of human aortic valve calcification. Biochem Biophys Res Commun. 2013;440(4):780–5.PubMedCrossRefPubMedCentralGoogle Scholar
  121. 121.
    Aikawa E, et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation. 2007;116(24):2841–50.PubMedCrossRefPubMedCentralGoogle Scholar
  122. 122.
    Aikawa E, Otto CM. Look more closely at the valve: imaging calcific aortic valve disease. Circulation. 2012;125(1):9–11.PubMedCrossRefPubMedCentralGoogle Scholar
  123. 123.
    Towler DA. Molecular and cellular aspects of calcific aortic valve disease. Circ Res. 2013;113(2):198–208.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Grinnell F, Ho CH. Transforming growth factor beta stimulates fibroblast-collagen matrix contraction by different mechanisms in mechanically loaded and unloaded matrices. Exp Cell Res. 2002;273(2):248–55.PubMedCrossRefPubMedCentralGoogle Scholar
  125. 125.
    Merryman WD, et al. Synergistic effects of cyclic tension and transforming growth factor-beta1 on the aortic valve myofibroblast. Cardiovasc Pathol. 2007;16(5):268–76.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Fisher CI, Chen J, Merryman WD. Calcific nodule morphogenesis by heart valve interstitial cells is strain dependent. Biomech Model Mechanobiol. 2013;12(1):5–17.PubMedCrossRefPubMedCentralGoogle Scholar
  127. 127.
    Chen JH, et al. Beta-catenin mediates mechanically regulated, transforming growth factor-beta1-induced myofibroblast differentiation of aortic valve interstitial cells. Arterioscler Thromb Vasc Biol. 2011;31(3):590–7.PubMedCrossRefPubMedCentralGoogle Scholar
  128. 128.
    Zhang YE. Non-Smad pathways in TGF-beta signaling. Cell Res. 2009;19(1):128–39.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Hutcheson JD, et al. 5-HT(2B) antagonism arrests non-canonical TGF-beta1-induced valvular myofibroblast differentiation. J Mol Cell Cardiol. 2012;53(5):707–14.PubMedPubMedCentralCrossRefGoogle Scholar
  130. 130.
    Hutcheson JD, et al. Cadherin-11 regulates cell-cell tension necessary for calcific nodule formation by valvular myofibroblasts. Arterioscler Thromb Vasc Biol. 2013;33(1):114–20.PubMedCrossRefPubMedCentralGoogle Scholar
  131. 131.
    Durbin AD, Gotlieb AI. Advances towards understanding heart valve response to injury. Cardiovasc Pathol. 2002;11(2):69–77.PubMedCrossRefGoogle Scholar
  132. 132.
    Balachandran K, et al. Elevated cyclic stretch induces aortic valve calcification in a bone morphogenic protein-dependent manner. Am J Pathol. 2010;177(1):49–57.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    O'Brien KD, et al. Osteopontin is expressed in human aortic valvular lesions. Circulation. 1995;92(8):2163–8.PubMedCrossRefGoogle Scholar
  134. 134.
    Mathieu P, et al. Calcification of human valve interstitial cells is dependent on alkaline phosphatase activity. J Heart Valve Dis. 2005;14(3):353–7.PubMedGoogle Scholar
  135. 135.
    Kaden JJ, et al. Expression of bone sialoprotein and bone morphogenetic protein-2 in calcific aortic stenosis. J Heart Valve Dis. 2004;13(4):560–6.PubMedGoogle Scholar
  136. 136.
    Johnson RC, Leopold JA, Loscalzo J. Vascular calcification: pathobiological mechanisms and clinical implications. Circ Res. 2006;99(10):1044–59.PubMedCrossRefGoogle Scholar
  137. 137.
    Miller JD, et al. Evidence for active regulation of pro-osteogenic signaling in advanced aortic valve disease. Arterioscler Thromb Vasc Biol. 2010;30(12):2482–6.PubMedPubMedCentralCrossRefGoogle Scholar
  138. 138.
    Alexopoulos A, et al. Bone regulatory factors NFATc1 and Osterix in human calcific aortic valves. Int J Cardiol. 2010;139(2):142–9.PubMedCrossRefGoogle Scholar
  139. 139.
    Yang X, et al. Pro-osteogenic phenotype of human aortic valve interstitial cells is associated with higher levels of toll-like receptors 2 and 4 and enhanced expression of bone morphogenetic protein 2. J Am Coll Cardiol. 2009;53(6):491–500.PubMedCrossRefGoogle Scholar
  140. 140.
    Miller JD, et al. Dysregulation of antioxidant mechanisms contributes to increased oxidative stress in calcific aortic valvular stenosis in humans. J Am Coll Cardiol. 2008;52(10):843–50.PubMedPubMedCentralCrossRefGoogle Scholar
  141. 141.
    Bostrom KI, Rajamannan NM, Towler DA. The regulation of valvular and vascular sclerosis by osteogenic morphogens. Circ Res. 2011;109(5):564–77.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Caira FC, et al. Human degenerative valve disease is associated with up-regulation of low-density lipoprotein receptor-related protein 5 receptor-mediated bone formation. J Am Coll Cardiol. 2006;47(8):1707–12.PubMedPubMedCentralCrossRefGoogle Scholar
  143. 143.
    Alfieri CM, et al. Wnt signaling in heart valve development and osteogenic gene induction. Dev Biol. 2010;338(2):127–35.PubMedCrossRefGoogle Scholar
  144. 144.
    Xu S, Gotlieb AI. Wnt3a/beta-catenin increases proliferation in heart valve interstitial cells. Cardiovasc Pathol. 2013;22(2):156–66.PubMedCrossRefGoogle Scholar
  145. 145.
    Rajamannan NM. The role of Lrp5/6 in cardiac valve disease: experimental hypercholesterolemia in the ApoE−/−/Lrp5−/− mice. J Cell Biochem. 2011;112(10):2987–91.PubMedPubMedCentralCrossRefGoogle Scholar
  146. 146.
    Shiotani A, et al. Regulation of osteoclast differentiation and function by receptor activator of NFkB ligand and osteoprotegerin. Anat Rec. 2002;268(2):137–46.PubMedCrossRefGoogle Scholar
  147. 147.
    Hofbauer LC, Schoppet M. Clinical implications of the osteoprotegerin/RANKL/RANK system for bone and vascular diseases. JAMA. 2004;292(4):490–5.PubMedCrossRefGoogle Scholar
  148. 148.
    Steinmetz M, et al. Differential profile of the OPG/RANKL/RANK-system in degenerative aortic native and bioprosthetic valves. J Heart Valve Dis. 2008;17(2):187–93.PubMedGoogle Scholar
  149. 149.
    Kaden JJ, et al. Influence of receptor activator of nuclear factor kappa B on human aortic valve myofibroblasts. Exp Mol Pathol. 2005;78(1):36–40.PubMedCrossRefGoogle Scholar
  150. 150.
    Kaden JJ, et al. Tumor necrosis factor alpha promotes an osteoblast-like phenotype in human aortic valve myofibroblasts: a potential regulatory mechanism of valvular calcification. Int J Mol Med. 2005;16(5):869–72.PubMedGoogle Scholar
  151. 151.
    Bucay N, et al. Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev. 1998;12(9):1260–8.PubMedPubMedCentralCrossRefGoogle Scholar
  152. 152.
    Weiss RM, et al. Osteoprotegerin inhibits aortic valve calcification and preserves valve function in hypercholesterolemic mice. PLoS One. 2013;8(6):e65201.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Hilton MJ, et al. Notch signaling maintains bone marrow mesenchymal progenitors by suppressing osteoblast differentiation. Nat Med. 2008;14(3):306–14.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Nigam V, Srivastava D. Notch1 represses osteogenic pathways in aortic valve cells. J Mol Cell Cardiol. 2009;47(6):828–34.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Nus M, et al. Diet-induced aortic valve disease in mice haploinsufficient for the Notch pathway effector RBPJK/CSL. Arterioscler Thromb Vasc Biol. 2011;31(7):1580–8.PubMedCrossRefPubMedCentralGoogle Scholar
  156. 156.
    Garg V, et al. Mutations in NOTCH1 cause aortic valve disease. Nature. 2005;437(7056):270–4.PubMedCrossRefPubMedCentralGoogle Scholar
  157. 157.
    Acharya A, et al. Inhibitory role of Notch1 in calcific aortic valve disease. PLoS One. 2011;6(11):e27743.PubMedPubMedCentralCrossRefGoogle Scholar
  158. 158.
    Helske S, et al. Induction of local angiotensin II-producing systems in stenotic aortic valves. J Am Coll Cardiol. 2004;44(9):1859–66.PubMedCrossRefPubMedCentralGoogle Scholar
  159. 159.
    Helske S, et al. Increased expression of profibrotic neutral endopeptidase and bradykinin type 1 receptors in stenotic aortic valves. Eur Heart J. 2007;28(15):1894–903.PubMedCrossRefPubMedCentralGoogle Scholar
  160. 160.
    Arishiro K, et al. Angiotensin receptor-1 blocker inhibits atherosclerotic changes and endothelial disruption of the aortic valve in hypercholesterolemic rabbits. J Am Coll Cardiol. 2007;49(13):1482–9.PubMedCrossRefGoogle Scholar
  161. 161.
    Capoulade R, et al. Impact of hypertension and renin-angiotensin system inhibitors in aortic stenosis. Eur J Clin Investig. 2013;43(12):1262–72.CrossRefGoogle Scholar
  162. 162.
    Rosenhek R, et al. Statins but not angiotensin-converting enzyme inhibitors delay progression of aortic stenosis. Circulation. 2004;110(10):1291–5.PubMedCrossRefGoogle Scholar
  163. 163.
    Schoen FJ, Levy RJ. SnapShot: calcification of bioprosthetic heart valves. Biomaterials. 2009;30(26):4445–6.PubMedCrossRefGoogle Scholar
  164. 164.
    Sacks MS. Biomechanics of engineered heart valve tissues. Conf Proc IEEE Eng Med Biol Soc. 2006;1:853–4.PubMedCrossRefGoogle Scholar
  165. 165.
    Zweng I, et al. Transcatheter versus surgical aortic valve replacement in high-risk patients: a propensity-score matched analysis. Heart Lung Circ. 2016;25:661.PubMedCrossRefGoogle Scholar
  166. 166.
    Phan K, et al. Transcatheter valve-in-valve implantation versus reoperative conventional aortic valve replacement: a systematic review. J Thorac Dis. 2016;8(1):E83–93.PubMedPubMedCentralGoogle Scholar
  167. 167.
    Bach DS. Prevalence and characteristics of unoperated patients with severe aortic stenosis. J Heart Valve Dis. 2011;20(3):284–91.PubMedGoogle Scholar
  168. 168.
    Czarny MJ, Resar JR. Diagnosis and management of valvular aortic stenosis. Clin Med Insights Cardiol. 2014;8(Suppl 1):15–24.PubMedPubMedCentralGoogle Scholar
  169. 169.
    Guerraty MA, et al. Relation of aortic valve calcium to chronic kidney disease (from the Chronic Renal Insufficiency Cohort Study). Am J Cardiol. 2015;115(9):1281–6.PubMedPubMedCentralCrossRefGoogle Scholar
  170. 170.
    Rattazzi M, et al. Aortic valve calcification in chronic kidney disease. Nephrol Dial Transplant. 2013;28(12):2968–76.PubMedCrossRefGoogle Scholar
  171. 171.
    Thanassoulis G, et al. Genetic associations with valvular calcification and aortic stenosis. N Engl J Med. 2013;368(6):503–12.PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Rogers MA, Aikawa E. A not-so-little role for lipoprotein(a) in the development of calcific aortic valve disease. Circulation. 2015;132(8):621–3.PubMedPubMedCentralCrossRefGoogle Scholar
  173. 173.
    New SE, Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res. 2011;108(11):1381–91.PubMedPubMedCentralCrossRefGoogle Scholar
  174. 174.
    Dweck MR, et al. Assessment of valvular calcification and inflammation by positron emission tomography in patients with aortic stenosis. Circulation. 2012;125(1):76–86.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2018

Authors and Affiliations

  • Payal Vyas
    • 1
  • Joshua D. Hutcheson
    • 1
  • Elena Aikawa
    • 1
    Email author
  1. 1.Department of Cardiovascular MedicineBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations